An Efficient Multi-scale Feature Enhancement Network for Industrial Surface Defect Detection

特征(语言学) 比例(比率) 曲面(拓扑) 计算机科学 材料科学 模式识别(心理学) 人工智能 物理 数学 几何学 哲学 语言学 量子力学
作者
Jiusheng Chen,Haoran Zha,Xiaoyu Zhang,Runxia Guo,Jun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb32a
摘要

Abstract Surface defect detection in industrial manufacturing ensures product quality and prevents malfunctions. To address issues such as multi-scale damage, low contrast, and small defects on the surfaces of industrial components, we propose an efficient multi-scale feature enhancement network (EMFEN) for improving the detection performance of industrial surface defects. First, a multi-scale extraction module is proposed to extract defect features at multiple levels to ensure sufficient semantic information for multi-scale damage and enhance the feature extraction ability of defects with different scales. Dual-orientation attention is then introduced into the detection network to establish a connection between spatial and channel dimensional information, which enables the network to focus on defect regions and filter out background noise. This alleviates the problems of low contrast and small defects. The experimental results confirm that the proposed network demonstrates superior detection performance compared to other detection algorithms across five surface defect datasets. Additionally, the parameters are reduced by 7.9%, the floating-point operations (FLOPs) decrease by 6.7%, and the model size is reduced by 5.2%. These improvements collectively provide an efficient solution for industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cotyer完成签到,获得积分10
刚刚
yanyuchi完成签到,获得积分10
2秒前
2秒前
curry发布了新的文献求助10
2秒前
3秒前
4秒前
斯文败类应助火鸡味锅巴采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Doct完成签到,获得积分10
5秒前
8秒前
LBX应助阳光凡儿采纳,获得30
8秒前
刘畅发布了新的文献求助10
8秒前
momo完成签到 ,获得积分10
8秒前
deswin完成签到,获得积分10
9秒前
华仔应助猪猪hero采纳,获得10
9秒前
传奇3应助有魅力鬼神采纳,获得10
9秒前
Doct发布了新的文献求助30
9秒前
10秒前
10秒前
哦哦发布了新的文献求助10
10秒前
11秒前
12秒前
coconut发布了新的文献求助10
12秒前
tyf完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
圣迭戈发布了新的文献求助10
15秒前
瘦瘦完成签到,获得积分10
15秒前
李健的小迷弟应助snow采纳,获得10
15秒前
15秒前
科研小子发布了新的文献求助30
16秒前
天明完成签到,获得积分10
16秒前
wanci应助爱吃烤肉的兔子采纳,获得30
16秒前
16秒前
白白完成签到,获得积分10
16秒前
sztao发布了新的文献求助30
17秒前
木染发布了新的文献求助20
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271