RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顶顶小明完成签到,获得积分10
刚刚
CodeCraft应助洛言lj采纳,获得10
刚刚
刚刚
刚刚
叶落不凉关注了科研通微信公众号
1秒前
缺心眼完成签到,获得积分10
1秒前
2秒前
Jiang 小白完成签到,获得积分10
2秒前
深情衬衫完成签到,获得积分10
2秒前
微风完成签到 ,获得积分10
2秒前
2秒前
晓晓鹤发布了新的文献求助10
3秒前
3秒前
McCallistery完成签到,获得积分10
3秒前
Pull发布了新的文献求助10
3秒前
3秒前
uh完成签到 ,获得积分10
4秒前
xu发布了新的文献求助10
4秒前
Eraser完成签到,获得积分10
4秒前
深情衬衫发布了新的文献求助10
5秒前
饱满含玉完成签到,获得积分10
5秒前
SciGPT应助幽默的依瑶采纳,获得10
5秒前
5秒前
情怀应助zy采纳,获得10
6秒前
6秒前
无心的乾完成签到,获得积分10
7秒前
LXZY发布了新的文献求助10
7秒前
今后应助TY采纳,获得10
7秒前
废废废完成签到,获得积分10
8秒前
任某人发布了新的文献求助10
9秒前
丘比特应助北极星采纳,获得10
9秒前
终止密码子完成签到,获得积分10
10秒前
文献四面八方来给文献四面八方来的求助进行了留言
10秒前
10秒前
俊秀的阁发布了新的文献求助10
10秒前
33完成签到,获得积分10
11秒前
江鑫楷发布了新的文献求助10
12秒前
sik发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458