RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyperle完成签到,获得积分10
1秒前
LIVE发布了新的文献求助200
1秒前
手抓饼啊完成签到,获得积分10
1秒前
1b完成签到,获得积分10
2秒前
danjuan完成签到,获得积分10
2秒前
2秒前
科研通AI6应助xy采纳,获得10
2秒前
tutu发布了新的文献求助30
2秒前
彭于晏应助琳lin采纳,获得10
2秒前
小小夕完成签到 ,获得积分10
3秒前
王睿完成签到,获得积分10
3秒前
keyandog完成签到,获得积分10
3秒前
3秒前
包容笑蓝发布了新的文献求助10
4秒前
4秒前
娇气的天亦完成签到 ,获得积分10
4秒前
Aurora完成签到 ,获得积分10
4秒前
lmn完成签到,获得积分10
5秒前
penway关注了科研通微信公众号
6秒前
6秒前
唯雷发布了新的文献求助10
7秒前
七七完成签到,获得积分20
7秒前
8秒前
8秒前
jam发布了新的文献求助10
8秒前
9秒前
英俊小鼠发布了新的文献求助10
9秒前
万能图书馆应助tucohy采纳,获得10
9秒前
10秒前
吕如音发布了新的文献求助10
10秒前
lzhoo完成签到,获得积分10
11秒前
12秒前
爆米花应助初秋采纳,获得10
12秒前
曾担任发布了新的文献求助10
13秒前
Alces发布了新的文献求助10
14秒前
朴西西完成签到 ,获得积分10
14秒前
14秒前
15秒前
琳lin发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798