RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
了了发布了新的文献求助10
1秒前
1秒前
ZQY完成签到 ,获得积分10
1秒前
斯文败类应助正直亦旋采纳,获得10
3秒前
科研通AI5应助jijahui采纳,获得80
4秒前
Jenny应助背后的诺言采纳,获得10
4秒前
木木完成签到,获得积分10
4秒前
赤邪发布了新的文献求助10
4秒前
4秒前
keen完成签到 ,获得积分10
4秒前
et完成签到,获得积分10
5秒前
桂魄完成签到,获得积分10
5秒前
5秒前
6秒前
wang发布了新的文献求助200
7秒前
7秒前
7秒前
英姑应助snowdrift采纳,获得10
7秒前
7秒前
7秒前
jy完成签到 ,获得积分10
7秒前
NexusExplorer应助立马毕业采纳,获得10
8秒前
在水一方应助123采纳,获得10
9秒前
科目三应助白华苍松采纳,获得10
10秒前
通~发布了新的文献求助10
10秒前
CipherSage应助千幻采纳,获得10
10秒前
10秒前
dddddd完成签到,获得积分10
10秒前
桂魄发布了新的文献求助10
10秒前
年轻的咖啡豆完成签到,获得积分20
11秒前
11秒前
绿洲发布了新的文献求助10
11秒前
11秒前
12秒前
aDou完成签到 ,获得积分10
12秒前
脑洞疼应助bc采纳,获得10
12秒前
NEMO发布了新的文献求助10
12秒前
李健应助mammoth采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762