单核苷酸多态性
基因组学
基因组
计算生物学
生物
可解释性
推论
深度学习
DNA测序
卷积神经网络
计算机科学
生物逆境
人工智能
遗传学
非生物胁迫
基因型
基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
摘要
Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.
科研通智能强力驱动
Strongly Powered by AbleSci AI