RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉q完成签到,获得积分10
刚刚
yuaner发布了新的文献求助10
刚刚
1秒前
hhhhh哈哈哈完成签到,获得积分10
1秒前
小栗完成签到,获得积分10
2秒前
liu发布了新的文献求助10
2秒前
2秒前
希言完成签到,获得积分10
2秒前
司空豁应助blue采纳,获得10
3秒前
Maize Man发布了新的文献求助10
3秒前
斯文败类应助jwg采纳,获得10
3秒前
3秒前
qiwen发布了新的文献求助10
4秒前
4秒前
4秒前
脑洞疼应助梁三柏采纳,获得10
5秒前
壮观缘分发布了新的文献求助30
5秒前
李健应助陈正军采纳,获得20
5秒前
5秒前
施行天发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
6秒前
6秒前
6秒前
清爽老九发布了新的文献求助10
7秒前
鱼啊鱼发布了新的文献求助10
8秒前
坏猫发布了新的文献求助10
8秒前
美好斓应助老迟到的定帮采纳,获得100
9秒前
9秒前
wankai发布了新的文献求助10
10秒前
10秒前
10秒前
1010完成签到 ,获得积分10
11秒前
小幸运发布了新的文献求助80
11秒前
12秒前
柚子完成签到,获得积分10
13秒前
13秒前
lila发布了新的文献求助10
13秒前
壮观缘分完成签到,获得积分20
14秒前
Dabiel1213发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298078
求助须知:如何正确求助?哪些是违规求助? 2933093
关于积分的说明 8462019
捐赠科研通 2606096
什么是DOI,文献DOI怎么找? 1422811
科研通“疑难数据库(出版商)”最低求助积分说明 661522
邀请新用户注册赠送积分活动 644850