RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不够萌发布了新的文献求助10
刚刚
垃圾筐完成签到,获得积分10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
愉快秀发布了新的文献求助10
1秒前
朴实的小萱完成签到 ,获得积分10
1秒前
涵忆发布了新的文献求助10
1秒前
wanci应助凯凯采纳,获得10
2秒前
小二郎应助凯凯采纳,获得10
2秒前
2秒前
Ava应助凯凯采纳,获得10
2秒前
天天快乐应助凯凯采纳,获得10
2秒前
深情安青应助凯凯采纳,获得10
2秒前
慕青应助凯凯采纳,获得10
2秒前
所所应助鹿人采纳,获得10
2秒前
李爱国应助凯凯采纳,获得10
2秒前
熬夜波比应助凯凯采纳,获得10
2秒前
Ava应助凯凯采纳,获得10
3秒前
大个应助凯凯采纳,获得10
3秒前
yyq发布了新的文献求助10
3秒前
3秒前
3秒前
快乐小猴完成签到,获得积分20
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
无奈可仁完成签到,获得积分10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助娇娇采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616