RiceSNP-BST: a deep learning framework for predicting biotic stress–associated SNPs in rice

单核苷酸多态性 基因组学 基因组 计算生物学 生物 可解释性 推论 深度学习 DNA测序 卷积神经网络 计算机科学 生物逆境 人工智能 遗传学 非生物胁迫 基因型 基因
作者
Jiang Xu,Yujia Gao,Quan Lu,Renyi Zhang,Jianfeng Gui,Xiaoshuang Liu,Zhenyu Yue
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae599
摘要

Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical challenge for rice research and the development of resistant varieties. However, the limited availability of high-quality rice genotype data has hindered this research. Deep learning has transformed biological research by facilitating the prediction and analysis of SNPs in biological sequence data. Convolutional neural networks are especially effective in extracting structural and local features from DNA sequences, leading to significant advancements in genomics. Nevertheless, the expanding catalog of genome-wide association studies provides valuable biological insights for rice research. Expanding on this idea, we introduce RiceSNP-BST, an automatic architecture search framework designed to predict SNPs associated with rice biotic stress traits (BST-associated SNPs) by integrating multidimensional features. Notably, the model successfully innovates the datasets, offering more precision than state-of-the-art methods while demonstrating good performance on an independent test set and cross-species datasets. Additionally, we extracted features from the original DNA sequences and employed causal inference to enhance the biological interpretability of the model. This study highlights the potential of RiceSNP-BST in advancing genome prediction in rice. Furthermore, a user-friendly web server for RiceSNP-BST (http://rice-snp-bst.aielab.cc) has been developed to support broader genome research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风伴夏发布了新的文献求助10
刚刚
刚刚
1秒前
聚砂成塔完成签到,获得积分10
1秒前
2秒前
义气酬海完成签到,获得积分10
3秒前
3秒前
3秒前
SciGPT应助xhmmm采纳,获得10
3秒前
CC完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
younghippo发布了新的文献求助10
5秒前
咔什么嚓发布了新的文献求助10
5秒前
Ou完成签到,获得积分10
5秒前
迅速如柏发布了新的文献求助20
5秒前
6秒前
科研通AI6应助DMSO采纳,获得30
6秒前
6秒前
6秒前
EasonYao发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
唐古拉完成签到,获得积分10
6秒前
科研通AI6应助刻苦靳采纳,获得10
7秒前
7秒前
7秒前
顾夜白发布了新的文献求助10
7秒前
芋泥波波完成签到,获得积分10
7秒前
一木张完成签到,获得积分10
7秒前
大大发布了新的文献求助10
8秒前
义气酬海发布了新的文献求助10
8秒前
8秒前
壮观百招发布了新的文献求助10
8秒前
8秒前
wangwangyh发布了新的文献求助10
9秒前
科研通AI6应助孙朱珠采纳,获得10
9秒前
jianzi927发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502