已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mechanochemically Transforming Waste Ceramic Capacitors into Self-Doped BaTiO3 Photocatalysts: An Efficient Approach for High-Value E-waste Recycling and Hydrogen Production

陶瓷 材料科学 兴奋剂 制氢 电容器 废物管理 陶瓷电容器 生产(经济) 烧结 化学工程 化学 冶金 有机化学 光电子学 电压 经济 宏观经济学 工程类 物理 量子力学
作者
Xinru Gao,Bo Niu,Zhenming Xu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (47): 17272-17281
标识
DOI:10.1021/acssuschemeng.4c06716
摘要

Waste ceramic capacitors, which are widely present in e-waste and rich in BaTiO3, Ag, Sn, Ni, and others, are valuable resources for recycling. Traditional pyrometallurgy and hydrometallurgy methods for separating metal elements from these capacitors are energy-intensive, involve lengthy processing steps, and generate waste liquids. This study breaks through the traditional idea of separating metal elements and proposes a one-step and efficient ball milling approach to directly transform the full compositions of waste ceramic capacitors into self-doped BaTiO3 photocatalysts without the need for chemical reagents. The influences of ball-milling time and ball-to-waste ratio on the microstructural characteristics, optical properties, charge separation efficiency, and photocatalytic H2 generation of the photocatalysts were investigated to reveal the mechanochemical effects and optimize the photocatalytic performance. The sample with a ball-to-waste ratio of 20:1 and ball-milling time of 1 h yielded small, uniform particles with high light absorption and charge separation, resulting in exceptional H2 production of 191.3 μmol g–1 h–1. Our findings demonstrate the mechanochemical effects on the synthesis and optimization of self-doped BaTiO3 photocatalysts from waste ceramic capacitors. This study also provides a strategy for directly recycling the full components of e-waste into functional materials without chemical consumption, thus avoiding the generation of waste liquids and achieving eco-friendly and high-value recycling of e-waste.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小蘑菇应助哈哈采纳,获得10
1秒前
打喷嚏的猪完成签到,获得积分10
2秒前
2秒前
共享精神应助ShellyHan采纳,获得80
2秒前
公西天抒完成签到,获得积分10
3秒前
ple完成签到,获得积分10
4秒前
4秒前
皮皮发布了新的文献求助10
4秒前
六一发布了新的文献求助10
5秒前
小卒发布了新的文献求助10
6秒前
addd发布了新的文献求助10
6秒前
善学以致用应助菠萝吹雪采纳,获得10
6秒前
7秒前
7秒前
7秒前
Zoeeey完成签到 ,获得积分10
8秒前
sonicshalin发布了新的文献求助10
9秒前
9秒前
智者应助Chara_kara采纳,获得30
9秒前
就好ih完成签到,获得积分10
9秒前
phuocnlh完成签到,获得积分10
10秒前
10秒前
Ava应助orange9采纳,获得10
11秒前
HEIKU应助起风了采纳,获得10
11秒前
11秒前
ShellyHan发布了新的文献求助80
11秒前
11秒前
An完成签到,获得积分10
12秒前
水解小博给水解小博的求助进行了留言
12秒前
共享精神应助凳子琪采纳,获得10
12秒前
dw完成签到,获得积分10
12秒前
zhang完成签到 ,获得积分10
13秒前
Dear发布了新的文献求助10
13秒前
13秒前
15秒前
li发布了新的文献求助30
15秒前
科目三应助雨肖采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555408
求助须知:如何正确求助?哪些是违规求助? 3131038
关于积分的说明 9389777
捐赠科研通 2830505
什么是DOI,文献DOI怎么找? 1556071
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750