Profiles of parental coping with paediatric cancer and their associations with parental illness adaptation

应对(心理学) 临床心理学 心理学 多项式logistic回归 多级模型 医学 计算机科学 机器学习
作者
Nadya Golfenshtein,Lamia P. Barakat,Amy Jo Lisanti,Shifra Ash
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.16341
摘要

Abstract Aims To identify profiles of coping in parents of children with cancer and their underlying factors and to examine which profile(s) are associated with illness adaptation. Design A cross‐sectional study utilizing surveys among parents of children with cancer ( n = 89). Methods Questionnaires included socio‐demographics, ways of coping, parenting stress, depression, post‐traumatic symptoms, illness adjustment and quality of life. Parental coping profiles were identified via latent profile analysis. Logistic multinomial regression was used to identify predictors of coping profiles. Adaptation outcomes were compared across the coping profiles via multivariable analyses of variance with Bonferroni adjustments. Results Five profiles were identified: The ‘Strong Repertoire’ used coping strategies moderate to high degree, with a positive‐active orientation; The ‘Moderate‐Activist’ used a similar pattern, rather more moderately; The ‘Self‐Regulator’ used self‐content strategies; The ‘Mild‐Engager’ used active‐engaging strategies; The ‘Avoidant Coper’ used avoidant‐passive strategies. Parental stress predicted coping profiles, so that parents experiencing greater stress utilized the ‘Avoidant Coper’ to a greater degree. Group comparisons revealed that ‘Avoidant‐Copers’ had more depressive and post‐traumatic symptoms, worse illness adjustment and lower quality of life. Conclusions Passive‐avoidant mechanisms of coping may be maladaptive in terms of parental cancer adaptation and indicative of lower resilience. Impact Findings can direct clinicians to promote familial resilience by adapting policy and practice to meet familial needs. Patient or Public Contribution Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qcf应助闪闪平凡采纳,获得10
刚刚
,,,发布了新的文献求助10
1秒前
1秒前
沉静智宸完成签到 ,获得积分10
1秒前
2秒前
黎小乐子发布了新的文献求助10
3秒前
3秒前
于梦寒完成签到,获得积分10
4秒前
4秒前
科研通AI5应助粿粿一定行采纳,获得10
5秒前
,,,完成签到,获得积分10
5秒前
lili完成签到,获得积分10
6秒前
6秒前
冰勾板勾发布了新的文献求助10
6秒前
快乐蜗牛完成签到,获得积分10
7秒前
小美酱发布了新的文献求助10
7秒前
suang完成签到,获得积分10
7秒前
Volume发布了新的文献求助10
7秒前
科研通AI5应助理li采纳,获得10
7秒前
科研通AI5应助标致一手采纳,获得10
9秒前
10秒前
12秒前
君无名完成签到 ,获得积分10
12秒前
13秒前
Ava应助研友_8WbkPZ采纳,获得10
13秒前
14秒前
烟花应助涛涛采纳,获得10
15秒前
16秒前
不器发布了新的文献求助10
16秒前
Denmark发布了新的文献求助50
17秒前
坚强砖家发布了新的文献求助10
17秒前
18秒前
Cherish完成签到 ,获得积分10
18秒前
深情安青应助出保函费采纳,获得10
18秒前
18秒前
明日青空发布了新的文献求助10
19秒前
上官若男应助刘小孩采纳,获得10
19秒前
20秒前
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931