Multiwavelength Surface-Enhanced Raman Scattering Fingerprints of Human Urine for Cancer Diagnosis

拉曼散射 材料科学 尿 癌症 拉曼光谱 纳米技术 光学 化学 医学 内科学 生物化学 物理
作者
Yuqing Gu,Jiayi Wang,Zhewen Luo,Xingyi Luo,Li Lin,Shuang Ni,Cong Wang,Hao Chen,Zehou Su,Yao Lu,Li‐Yong Gan,Zhou Chen,Jian Ye
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (11): 5999-6010 被引量:1
标识
DOI:10.1021/acssensors.4c01873
摘要

Label-free surface-enhanced Raman spectroscopy (SERS) is capable of capturing rich compositional information from complex biosamples by providing vibrational spectra that are crucial for biosample identification. However, increasing complexity and subtle variations in biological media can diminish the discrimination accuracy of traditional SERS excited by a single laser wavelength. Herein, we introduce a multiwavelength SERS approach combined with machine learning (ML)-based classification to improve the discrimination accuracy of human urine specimens for bladder cancer (BCa) diagnosis. This strategy leverages the excitation-wavelength-dependent SERS spectral profiles of complex matrices, which are mainly attributed to wavelength-related vibrational changes in individual analytes and differences in the variation ratios of SERS intensity across different wavelengths among various analytes. By capturing SERS fingerprints under multiple excitation wavelengths, we can acquire more comprehensive and unique chemical information on complex samples. Further experimental examinations with clinical urine specimens, supported by ML algorithms, demonstrate the effectiveness of this multiwavelength strategy and improve the diagnostic accuracy of BCa and staging of its invasion with SERS spectra from increasing numbers of wavelengths. The multiwavelength SERS holds promise as a convenient, cost-effective, and broadly applicable technique for the precise identification of complex matrices and diagnosis of diseases based on body fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助ZZZ333采纳,获得10
刚刚
刚刚
领导范儿应助过时的秋尽采纳,获得10
刚刚
dddd发布了新的文献求助30
刚刚
HtheJ完成签到,获得积分10
1秒前
11完成签到,获得积分10
1秒前
加菲猫完成签到,获得积分10
1秒前
燕子完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
李晓凤发布了新的文献求助10
3秒前
3秒前
我嘞个豆应助积极的如之采纳,获得10
5秒前
在水一方应助dddd采纳,获得30
6秒前
echo发布了新的文献求助10
6秒前
Akim应助cjh采纳,获得10
7秒前
YQ57发布了新的文献求助10
7秒前
8秒前
8秒前
白日兰发布了新的文献求助20
9秒前
xxww发布了新的文献求助30
9秒前
10秒前
10秒前
12秒前
虚心醉蝶完成签到 ,获得积分10
12秒前
12秒前
13秒前
爆米花应助仅仅采纳,获得10
13秒前
13秒前
12发布了新的文献求助10
13秒前
李爱国应助liuzhanyu采纳,获得10
14秒前
14秒前
何晓庆发布了新的文献求助20
15秒前
共享精神应助tty采纳,获得10
15秒前
djiwisksk66应助泥泥采纳,获得10
15秒前
vivien发布了新的文献求助10
16秒前
YQ57完成签到,获得积分10
16秒前
16秒前
YOGA完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993