Multiwavelength Surface-Enhanced Raman Scattering Fingerprints of Human Urine for Cancer Diagnosis

拉曼散射 材料科学 尿 癌症 拉曼光谱 纳米技术 光学 化学 医学 内科学 生物化学 物理
作者
Yuqing Gu,Jiayi Wang,Zhewen Luo,Xingyi Luo,Li Lin,Shuang Ni,Cong Wang,Hao Chen,Zehou Su,Yao Lu,Li‐Yong Gan,Zhou Chen,Jian Ye
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (11): 5999-6010
标识
DOI:10.1021/acssensors.4c01873
摘要

Label-free surface-enhanced Raman spectroscopy (SERS) is capable of capturing rich compositional information from complex biosamples by providing vibrational spectra that are crucial for biosample identification. However, increasing complexity and subtle variations in biological media can diminish the discrimination accuracy of traditional SERS excited by a single laser wavelength. Herein, we introduce a multiwavelength SERS approach combined with machine learning (ML)-based classification to improve the discrimination accuracy of human urine specimens for bladder cancer (BCa) diagnosis. This strategy leverages the excitation-wavelength-dependent SERS spectral profiles of complex matrices, which are mainly attributed to wavelength-related vibrational changes in individual analytes and differences in the variation ratios of SERS intensity across different wavelengths among various analytes. By capturing SERS fingerprints under multiple excitation wavelengths, we can acquire more comprehensive and unique chemical information on complex samples. Further experimental examinations with clinical urine specimens, supported by ML algorithms, demonstrate the effectiveness of this multiwavelength strategy and improve the diagnostic accuracy of BCa and staging of its invasion with SERS spectra from increasing numbers of wavelengths. The multiwavelength SERS holds promise as a convenient, cost-effective, and broadly applicable technique for the precise identification of complex matrices and diagnosis of diseases based on body fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助赖道之采纳,获得10
1秒前
ccc完成签到,获得积分10
1秒前
1秒前
1秒前
4秒前
Pauline完成签到,获得积分10
6秒前
jackie发布了新的文献求助10
6秒前
笨笨摇伽发布了新的文献求助10
8秒前
科目三应助皓月繁星采纳,获得10
8秒前
tomato完成签到,获得积分20
10秒前
CodeCraft应助缘一采纳,获得10
11秒前
小二郎应助刘铭晨采纳,获得10
11秒前
11秒前
大个应助风雨1210采纳,获得10
11秒前
一壶清酒完成签到,获得积分10
11秒前
12秒前
tomato发布了新的文献求助30
13秒前
陈莹发布了新的文献求助10
14秒前
15秒前
15秒前
小狗同志006完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
皓月繁星完成签到,获得积分10
16秒前
ZeJ发布了新的文献求助10
17秒前
17秒前
18秒前
usrcu完成签到 ,获得积分10
18秒前
122x应助赖道之采纳,获得10
19秒前
厉不厉害你坤哥完成签到,获得积分10
19秒前
wuzhizhiya发布了新的文献求助10
20秒前
20秒前
20秒前
皓月繁星发布了新的文献求助10
21秒前
21秒前
迷路白桃发布了新的文献求助20
21秒前
ZeJ完成签到,获得积分10
22秒前
景别发布了新的文献求助10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808