Multiwavelength Surface-Enhanced Raman Scattering Fingerprints of Human Urine for Cancer Diagnosis

拉曼散射 材料科学 尿 癌症 拉曼光谱 纳米技术 光学 化学 医学 内科学 生物化学 物理
作者
Yuqing Gu,Jiayi Wang,Zhewen Luo,Xingyi Luo,Li Lin,Shuang Ni,Cong Wang,Hao Chen,Zehou Su,Yao Lu,Li‐Yong Gan,Zhou Chen,Jian Ye
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c01873
摘要

Label-free surface-enhanced Raman spectroscopy (SERS) is capable of capturing rich compositional information from complex biosamples by providing vibrational spectra that are crucial for biosample identification. However, increasing complexity and subtle variations in biological media can diminish the discrimination accuracy of traditional SERS excited by a single laser wavelength. Herein, we introduce a multiwavelength SERS approach combined with machine learning (ML)-based classification to improve the discrimination accuracy of human urine specimens for bladder cancer (BCa) diagnosis. This strategy leverages the excitation-wavelength-dependent SERS spectral profiles of complex matrices, which are mainly attributed to wavelength-related vibrational changes in individual analytes and differences in the variation ratios of SERS intensity across different wavelengths among various analytes. By capturing SERS fingerprints under multiple excitation wavelengths, we can acquire more comprehensive and unique chemical information on complex samples. Further experimental examinations with clinical urine specimens, supported by ML algorithms, demonstrate the effectiveness of this multiwavelength strategy and improve the diagnostic accuracy of BCa and staging of its invasion with SERS spectra from increasing numbers of wavelengths. The multiwavelength SERS holds promise as a convenient, cost-effective, and broadly applicable technique for the precise identification of complex matrices and diagnosis of diseases based on body fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu发布了新的文献求助10
刚刚
2秒前
vv发布了新的文献求助10
2秒前
4秒前
包子发布了新的文献求助10
4秒前
思源应助笑柳采纳,获得10
6秒前
ZHY完成签到,获得积分10
6秒前
6秒前
yun发布了新的文献求助10
9秒前
9秒前
鞭霆发布了新的文献求助30
9秒前
幼稚鬼完成签到 ,获得积分10
12秒前
13秒前
15秒前
343727237@qq.com完成签到,获得积分10
15秒前
16秒前
李爱国应助陈补天采纳,获得10
16秒前
你小点声我布隆完成签到,获得积分10
17秒前
17秒前
轻松翠丝完成签到,获得积分10
20秒前
20秒前
evelyn发布了新的文献求助10
22秒前
所所应助wls采纳,获得30
22秒前
24秒前
林瀚铅关注了科研通微信公众号
24秒前
英姑应助清爽沛槐采纳,获得10
25秒前
25秒前
维力西瓜发布了新的文献求助10
27秒前
28秒前
任我行发布了新的文献求助10
30秒前
多喝水应助雨天采纳,获得10
32秒前
32秒前
Zero_榊啸号完成签到,获得积分10
32秒前
33秒前
哈哈哈完成签到,获得积分10
35秒前
毛豆应助小路采纳,获得10
36秒前
38秒前
激昂的白凡完成签到,获得积分10
38秒前
taodage发布了新的文献求助10
39秒前
牛奶开水完成签到 ,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195