Evaluation of Polysaccharide Content in Shiitake Culinary-Medicinal Mushroom, Lentinula edodes (Agaricomycetes), via Near-Infrared Spectroscopy Integrated with Deep Learning

香菇属 蘑菇 多糖 近红外光谱 深度学习 人工智能 卷积神经网络 数学 木耳 食用菌 计算机科学 食品科学 模式识别(心理学) 化学 生物 生物化学 神经科学
作者
Xuan Dong,Xiangkun Gao,Rong Wang,Chao Liu,Jiayue Wu,Qing Huang
出处
期刊:International Journal of Medicinal Mushrooms [Begell House]
卷期号:25 (1): 13-28 被引量:10
标识
DOI:10.1615/intjmedmushrooms.2022046298
摘要

Polysaccharide is one of the bioactive ingredients extracted from the fruiting body of Lentinula edodes (=L. edodes), which has many medicinal functions. While the content of polysaccharide can be measured by near-infrared (NIR) spectroscopy, the NIR analytical models established previously only covered L. edodes from very limited sources, and thus could not achieve high accuracy for large samples from more varied sources. Strictly, there is a nonlinear relationship between NIR spectral data and chemical label values, and traditional modeling methods for NIR data analysis have problems such as insufficient feature learning ability and difficulty in training. The deep learning model has excellent nonlinear modeling ability and generalization capacity, which is very suitable for analyzing larger samples. In this study, we constructed a novel framework with deep learning techniques on the NIR analysis of the content of polysaccharide in L. edodes. The siPLS model was established based on the combination of the bands 4797-3995 cm-1 and 6401-5600 cm-1, while the one-dimensional convolutional neural network (1D-CNN) model was established with improved feature in the treatment of the spectral data. The comparative experimental results showed that the 1D-CNN model (R2pre = 95.50%; RMSEP =0.1875) outperformed the siPLS model (R2pre = 87.89%, RMSEP = 0.6221). As such, this work has demonstrated that NIR spectroscopy with the integration of deep learning can provide more accurate quantification of polysaccharide in L. edodes. Such method can be very useful for nutritional grading and quality control of diverse L. edodes in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
husky完成签到 ,获得积分10
3秒前
科研通AI6.1应助斑ban采纳,获得10
4秒前
沉静完成签到 ,获得积分10
6秒前
Julia完成签到 ,获得积分10
7秒前
含蓄冰蓝完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
圆彰七大完成签到 ,获得积分10
11秒前
含蓄冰蓝发布了新的文献求助10
12秒前
13秒前
yy完成签到,获得积分10
14秒前
快乐的小胖完成签到,获得积分10
16秒前
yy完成签到,获得积分10
18秒前
混合结构完成签到 ,获得积分10
20秒前
斑ban发布了新的文献求助10
20秒前
深情安青应助yy采纳,获得10
21秒前
23秒前
kid发布了新的文献求助10
28秒前
lizishu举报典雅的灵煌求助涉嫌违规
31秒前
temaxs完成签到 ,获得积分10
34秒前
华仔应助大胆夏兰采纳,获得10
35秒前
完美世界应助kid采纳,获得10
36秒前
凶狠的姚完成签到 ,获得积分10
36秒前
41秒前
45秒前
潇洒斑马完成签到 ,获得积分10
46秒前
rui完成签到 ,获得积分10
58秒前
58秒前
科研通AI2S应助美琦采纳,获得10
1分钟前
光亮的睿渊完成签到 ,获得积分10
1分钟前
Forever完成签到 ,获得积分10
1分钟前
SSY完成签到 ,获得积分10
1分钟前
Dr.c发布了新的文献求助10
1分钟前
xiaosi完成签到 ,获得积分10
1分钟前
叮叮当当发布了新的文献求助200
1分钟前
科研通AI6.1应助Chengcheng采纳,获得10
1分钟前
TKTK发布了新的文献求助30
1分钟前
花泽秀完成签到,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998