Evaluation of Polysaccharide Content in Shiitake Culinary-Medicinal Mushroom, Lentinula edodes (Agaricomycetes), via Near-Infrared Spectroscopy Integrated with Deep Learning

香菇属 蘑菇 多糖 近红外光谱 深度学习 人工智能 卷积神经网络 数学 木耳 食用菌 计算机科学 食品科学 模式识别(心理学) 化学 生物 生物化学 神经科学
作者
Xuan Dong,Xiangkun Gao,Rong Wang,Chao Liu,Jiayue Wu,Qing Huang
出处
期刊:International Journal of Medicinal Mushrooms [Begell House]
卷期号:25 (1): 13-28 被引量:10
标识
DOI:10.1615/intjmedmushrooms.2022046298
摘要

Polysaccharide is one of the bioactive ingredients extracted from the fruiting body of Lentinula edodes (=L. edodes), which has many medicinal functions. While the content of polysaccharide can be measured by near-infrared (NIR) spectroscopy, the NIR analytical models established previously only covered L. edodes from very limited sources, and thus could not achieve high accuracy for large samples from more varied sources. Strictly, there is a nonlinear relationship between NIR spectral data and chemical label values, and traditional modeling methods for NIR data analysis have problems such as insufficient feature learning ability and difficulty in training. The deep learning model has excellent nonlinear modeling ability and generalization capacity, which is very suitable for analyzing larger samples. In this study, we constructed a novel framework with deep learning techniques on the NIR analysis of the content of polysaccharide in L. edodes. The siPLS model was established based on the combination of the bands 4797-3995 cm-1 and 6401-5600 cm-1, while the one-dimensional convolutional neural network (1D-CNN) model was established with improved feature in the treatment of the spectral data. The comparative experimental results showed that the 1D-CNN model (R2pre = 95.50%; RMSEP =0.1875) outperformed the siPLS model (R2pre = 87.89%, RMSEP = 0.6221). As such, this work has demonstrated that NIR spectroscopy with the integration of deep learning can provide more accurate quantification of polysaccharide in L. edodes. Such method can be very useful for nutritional grading and quality control of diverse L. edodes in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
一YI完成签到,获得积分10
7秒前
汉堡包应助一个小胖子采纳,获得10
8秒前
xiangqing完成签到 ,获得积分10
9秒前
Miracle完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
Dr.Tang完成签到 ,获得积分10
17秒前
闻屿完成签到,获得积分10
18秒前
lcarus完成签到 ,获得积分10
21秒前
风里等你完成签到,获得积分10
23秒前
赧赧完成签到 ,获得积分10
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
lcarus关注了科研通微信公众号
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
Adc应助科研通管家采纳,获得10
25秒前
stiger应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
看文献完成签到,获得积分10
26秒前
26秒前
呆萌芙蓉完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
淮安石河子完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
娷静完成签到 ,获得积分10
34秒前
TGU的小马同学完成签到 ,获得积分10
34秒前
34秒前
老和山完成签到,获得积分10
36秒前
kusicfack完成签到,获得积分10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527