Evaluation of Polysaccharide Content in Shiitake Culinary-Medicinal Mushroom, Lentinula edodes (Agaricomycetes), via Near-Infrared Spectroscopy Integrated with Deep Learning

香菇属 蘑菇 多糖 近红外光谱 深度学习 人工智能 卷积神经网络 数学 木耳 食用菌 计算机科学 食品科学 模式识别(心理学) 化学 生物 生物化学 神经科学
作者
Xuan Dong,Xiangkun Gao,Rong Wang,Chao Liu,Jiayue Wu,Qing Huang
出处
期刊:International Journal of Medicinal Mushrooms [Begell House]
卷期号:25 (1): 13-28 被引量:9
标识
DOI:10.1615/intjmedmushrooms.2022046298
摘要

Polysaccharide is one of the bioactive ingredients extracted from the fruiting body of Lentinula edodes (=L. edodes), which has many medicinal functions. While the content of polysaccharide can be measured by near-infrared (NIR) spectroscopy, the NIR analytical models established previously only covered L. edodes from very limited sources, and thus could not achieve high accuracy for large samples from more varied sources. Strictly, there is a nonlinear relationship between NIR spectral data and chemical label values, and traditional modeling methods for NIR data analysis have problems such as insufficient feature learning ability and difficulty in training. The deep learning model has excellent nonlinear modeling ability and generalization capacity, which is very suitable for analyzing larger samples. In this study, we constructed a novel framework with deep learning techniques on the NIR analysis of the content of polysaccharide in L. edodes. The siPLS model was established based on the combination of the bands 4797-3995 cm-1 and 6401-5600 cm-1, while the one-dimensional convolutional neural network (1D-CNN) model was established with improved feature in the treatment of the spectral data. The comparative experimental results showed that the 1D-CNN model (R2pre = 95.50%; RMSEP =0.1875) outperformed the siPLS model (R2pre = 87.89%, RMSEP = 0.6221). As such, this work has demonstrated that NIR spectroscopy with the integration of deep learning can provide more accurate quantification of polysaccharide in L. edodes. Such method can be very useful for nutritional grading and quality control of diverse L. edodes in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adore完成签到,获得积分20
1秒前
2秒前
欢乐城完成签到,获得积分10
2秒前
闻折柳发布了新的文献求助10
3秒前
自然的曲奇完成签到 ,获得积分10
3秒前
pluto应助祝问柳采纳,获得10
4秒前
李健应助祝问柳采纳,获得10
4秒前
彭林发布了新的文献求助30
4秒前
晚棠完成签到 ,获得积分10
4秒前
完美世界应助温暖幻桃采纳,获得10
7秒前
positive发布了新的文献求助10
8秒前
tmxx发布了新的文献求助10
8秒前
lixiviant发布了新的文献求助10
11秒前
搜集达人应助优秀爆米花采纳,获得10
12秒前
整齐唯雪完成签到,获得积分10
12秒前
12秒前
12秒前
www完成签到 ,获得积分10
13秒前
卡卡西应助杨h采纳,获得20
13秒前
海孩子发布了新的文献求助10
16秒前
调皮正豪完成签到,获得积分10
16秒前
典雅碧空发布了新的文献求助10
17秒前
追忆发布了新的文献求助10
17秒前
Rondab应助小无采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
祝问柳完成签到,获得积分20
20秒前
lixiviant完成签到,获得积分20
22秒前
22秒前
26秒前
ysy完成签到,获得积分10
28秒前
Foch发布了新的文献求助20
28秒前
28秒前
momo完成签到,获得积分10
28秒前
阿卓西完成签到,获得积分10
31秒前
柠檬发布了新的文献求助10
31秒前
31秒前
rrraymond发布了新的文献求助10
32秒前
华仔应助Liiii采纳,获得10
34秒前
34秒前
JamesPei应助科研通管家采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689