Evaluation of Polysaccharide Content in Shiitake Culinary-Medicinal Mushroom, Lentinula edodes (Agaricomycetes), via Near-Infrared Spectroscopy Integrated with Deep Learning

香菇属 蘑菇 多糖 近红外光谱 深度学习 人工智能 卷积神经网络 数学 木耳 食用菌 计算机科学 食品科学 模式识别(心理学) 化学 生物 生物化学 神经科学
作者
Xuan Dong,Xiangkun Gao,Rong Wang,Chao Liu,Jiayue Wu,Qing Huang
出处
期刊:International Journal of Medicinal Mushrooms 卷期号:25 (1): 13-28 被引量:2
标识
DOI:10.1615/intjmedmushrooms.2022046298
摘要

Polysaccharide is one of the bioactive ingredients extracted from the fruiting body of Lentinula edodes (=L. edodes), which has many medicinal functions. While the content of polysaccharide can be measured by near-infrared (NIR) spectroscopy, the NIR analytical models established previously only covered L. edodes from very limited sources, and thus could not achieve high accuracy for large samples from more varied sources. Strictly, there is a nonlinear relationship between NIR spectral data and chemical label values, and traditional modeling methods for NIR data analysis have problems such as insufficient feature learning ability and difficulty in training. The deep learning model has excellent nonlinear modeling ability and generalization capacity, which is very suitable for analyzing larger samples. In this study, we constructed a novel framework with deep learning techniques on the NIR analysis of the content of polysaccharide in L. edodes. The siPLS model was established based on the combination of the bands 4797-3995 cm-1 and 6401-5600 cm-1, while the one-dimensional convolutional neural network (1D-CNN) model was established with improved feature in the treatment of the spectral data. The comparative experimental results showed that the 1D-CNN model (R2pre = 95.50%; RMSEP =0.1875) outperformed the siPLS model (R2pre = 87.89%, RMSEP = 0.6221). As such, this work has demonstrated that NIR spectroscopy with the integration of deep learning can provide more accurate quantification of polysaccharide in L. edodes. Such method can be very useful for nutritional grading and quality control of diverse L. edodes in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真如丁发布了新的文献求助10
刚刚
Yolanda完成签到 ,获得积分10
1秒前
ZMK完成签到 ,获得积分10
1秒前
平安顺遂完成签到 ,获得积分10
2秒前
欧阳X天发布了新的文献求助10
3秒前
小墨应助hayk采纳,获得10
3秒前
cosmtraveller完成签到,获得积分10
5秒前
半分青蓝完成签到,获得积分10
5秒前
毛123完成签到,获得积分10
6秒前
7秒前
nipanpan完成签到,获得积分10
7秒前
7秒前
8秒前
Felixsun发布了新的文献求助10
12秒前
Cloud应助Tayzon采纳,获得20
12秒前
yw完成签到 ,获得积分20
13秒前
dmsoli完成签到,获得积分10
14秒前
orixero应助陈陈采纳,获得50
14秒前
可靠的咖啡完成签到,获得积分10
16秒前
彭于晏应助炙热若云采纳,获得10
16秒前
贪玩夜玉完成签到 ,获得积分10
19秒前
科研通AI2S应助hayk采纳,获得10
20秒前
沈薇3完成签到,获得积分20
21秒前
醉书生应助jssssssss采纳,获得20
22秒前
Felixsun完成签到,获得积分20
22秒前
24秒前
平安顺遂发布了新的文献求助10
24秒前
rare发布了新的文献求助20
25秒前
沈薇3发布了新的文献求助30
26秒前
科研通AI2S应助石头采纳,获得10
26秒前
陈陈完成签到,获得积分10
32秒前
菲菲公主完成签到,获得积分10
34秒前
芳芳子呀完成签到,获得积分10
34秒前
英姑应助joe采纳,获得10
35秒前
35秒前
Niuma发布了新的文献求助10
36秒前
36秒前
小二郎应助lilililili采纳,获得10
36秒前
寂寞的从波完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400