🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey

对抗制 计算机科学 对抗性机器学习 人工智能 计算机安全 机器学习 深度学习 入侵检测系统 分类学(生物学) 人工神经网络 深层神经网络 植物 生物
作者
Ke He,Dong Seong Kim,Muhammad Rizwan Asghar
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 538-566 被引量:141
标识
DOI:10.1109/comst.2022.3233793
摘要

Network-based Intrusion Detection System (NIDS) forms the frontline defence against network attacks that compromise the security of the data, systems, and networks. In recent years, Deep Neural Networks (DNNs) have been increasingly used in NIDS to detect malicious traffic due to their high detection accuracy. However, DNNs are vulnerable to adversarial attacks that modify an input example with imperceivable perturbation, which causes a misclassification by the DNN. In security-sensitive domains, such as NIDS, adversarial attacks pose a severe threat to network security. However, existing studies in adversarial learning against NIDS directly implement adversarial attacks designed for Computer Vision (CV) tasks, ignoring the fundamental differences in the detection pipeline and feature spaces between CV and NIDS. It remains a major research challenge to launch and detect adversarial attacks against NIDS. This article surveys the recent literature on NIDS, adversarial attacks, and network defences since 2015 to examine the differences in adversarial learning against deep neural networks in CV and NIDS. It provides the reader with a thorough understanding of DL-based NIDS, adversarial attacks and defences, and research trends in this field. We first present a taxonomy of DL-based NIDS and discuss the impact of taxonomy on adversarial learning. Next, we review existing white-box and black-box adversarial attacks on DNNs and their applicability in the NIDS domain. Finally, we review existing defence mechanisms against adversarial examples and their characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
程南发布了新的文献求助10
44秒前
月儿完成签到 ,获得积分10
46秒前
1分钟前
Sylvia_J完成签到 ,获得积分10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
依古比古完成签到,获得积分10
3分钟前
3分钟前
3分钟前
神奇机智的萌完成签到,获得积分10
4分钟前
疯狂的飞机完成签到,获得积分20
5分钟前
6分钟前
舒适小翠发布了新的文献求助10
6分钟前
cqbrain123完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
doudou完成签到 ,获得积分10
7分钟前
领导范儿应助Bo采纳,获得10
7分钟前
舒适小翠完成签到,获得积分10
8分钟前
8分钟前
Bo发布了新的文献求助10
8分钟前
Bo完成签到,获得积分20
8分钟前
李爱国应助童严柯采纳,获得10
8分钟前
wangfaqing942完成签到 ,获得积分10
9分钟前
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
9分钟前
jumbaumba发布了新的文献求助10
9分钟前
白菜完成签到 ,获得积分0
9分钟前
9分钟前
kawsaray发布了新的文献求助10
10分钟前
熊猫完成签到 ,获得积分10
10分钟前
10分钟前
爱宝乐宝福宝完成签到,获得积分10
11分钟前
Sue完成签到 ,获得积分10
12分钟前
CodeCraft应助广泛的采纳,获得10
12分钟前
13分钟前
广泛的发布了新的文献求助10
13分钟前
丘比特应助科研通管家采纳,获得10
13分钟前
李健的小迷弟应助广泛的采纳,获得10
13分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600457
求助须知:如何正确求助?哪些是违规求助? 3169339
关于积分的说明 9560838
捐赠科研通 2875637
什么是DOI,文献DOI怎么找? 1579002
邀请新用户注册赠送积分活动 742341
科研通“疑难数据库(出版商)”最低求助积分说明 725177