CloudViT: A Lightweight Vision Transformer Network for Remote Sensing Cloud Detection

计算机科学 云计算 人工智能 多光谱图像 频道(广播) 特征提取 计算机视觉 遥感 计算机网络 操作系统 地质学
作者
Bin Zhang,Yongjun Zhang,Li, Yansheng,Yi Wan,Yongxiang Yao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2022.3233122
摘要

Clouds inevitably exist in satellite images, which limit the processing and application of satellite images to a certain extent. Therefore, cloud detection is a preprocessing task in satellite image extraction and analysis processing. However, the existing methods are difficult to mine robust features, and the number of parameters and computation are large, which is not conducive to the deployment of the model. In this letter, cloud vision transformer (CloudViT), a lightweight vision transformer network for cloud detection from satellite imagery, is proposed. In detail, to utilize dark channel priors in multispectral imagery to guide the network to learn features, a multiscale dark channel extractor is used to first predict dark channels, and then, the dark channel features and image features are input to the attention mechanism-based dark channel-guided context aggregation module to enhance image features, which in turn makes cloud detection results more accurate. At the same time, to enhance the transfer ability of the network between different satellite sensors, a plug-and-play channel adaptive module is proposed to deal with the inconsistency of the number of different satellite sensor bands. The experimental results on the Landsat7 dataset show that our network CloudViT outperforms the state-of-the-art methods while keeping the number of parameters and computation small. At the same time, the experimental results on transfer to three other datasets show that using the channel adaptation module can greatly improve the transfer ability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公交卡发布了新的文献求助10
5秒前
5秒前
8秒前
9秒前
shinysparrow应助木木三采纳,获得50
10秒前
草木发布了新的文献求助10
10秒前
fu完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
iNk应助加菲丰丰采纳,获得20
15秒前
哈哈哈完成签到,获得积分20
16秒前
阜睿发布了新的文献求助10
17秒前
思源应助Jacqueline777采纳,获得10
17秒前
17秒前
18秒前
18秒前
wuliumu发布了新的文献求助10
18秒前
徐安琪完成签到,获得积分20
23秒前
小蘑菇应助YY采纳,获得10
25秒前
魁梧的小霸王完成签到,获得积分10
27秒前
29秒前
xy完成签到,获得积分10
29秒前
草木发布了新的文献求助10
29秒前
vassallo完成签到 ,获得积分10
34秒前
清爽的真完成签到,获得积分10
34秒前
34秒前
科研通AI2S应助伊麦香城采纳,获得10
34秒前
哈哈哈哈发布了新的文献求助10
35秒前
葛二给葛二的求助进行了留言
38秒前
一投必中完成签到,获得积分10
40秒前
小生完成签到,获得积分10
42秒前
43秒前
33完成签到,获得积分10
44秒前
清圆527完成签到,获得积分10
47秒前
一杯美事发布了新的文献求助10
48秒前
天天呼的海角完成签到,获得积分10
50秒前
shusz完成签到,获得积分10
53秒前
53秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140334
求助须知:如何正确求助?哪些是违规求助? 2791068
关于积分的说明 7797887
捐赠科研通 2447569
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194