亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Supporting students’ generation of feedback in large-scale online course with artificial intelligence-enabled evaluation

印为红字的 同行反馈 计算机科学 同行评估 比例(比率) 数学教育 编码(社会科学) 心理学 统计 数学 物理 量子力学
作者
Alwyn Vwen Yen LEE
出处
期刊:Studies in Educational Evaluation [Elsevier]
卷期号:77: 101250-101250 被引量:11
标识
DOI:10.1016/j.stueduc.2023.101250
摘要

Educators in large-scale online courses tend to lack the necessary resources to generate and provide adequate feedback for all students, especially when students' learning outcomes are evaluated through student writing. As a result, students welcome peer feedback and sometimes generate self-feedback to widen their perspectives and obtain feedback, but often lack the support to do so. This study, as part of a larger project, sought to address this prevalent problem in large-scale courses by allowing students to write essays as an expression of their opinions and response to others, conduct peer and self-evaluation, using provided rubric and Artificial Intelligence (AI)-enabled evaluation to aid the giving and receiving of feedback. A total of 605 undergraduate students were part of a large-scale online course and contributed over 2500 short essays during a semester. The research design uses a mixed-methods approach, consisting qualitative measures used during essay coding, and quantitative methods from the application of machine learning algorithms. With limited instructors and resources, students first use instructor-developed rubric to conduct peer and self-assessment, while instructors qualitatively code a subset of essays that are used as inputs for training a machine learning model, which is subsequently used to provide automated scores and an accuracy rate for the remaining essays. With AI-enabled evaluation, the provision of feedback can become a sustainable process with students receiving and using meaningful feedback for their work, entailing shared responsibility from teachers and students, and becoming more effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程风破浪完成签到,获得积分10
刚刚
鹏程万里完成签到,获得积分10
3秒前
可爱的函函应助科研小白采纳,获得10
4秒前
8秒前
13秒前
悄悄拔尖儿完成签到 ,获得积分10
14秒前
16秒前
科研小白发布了新的文献求助10
21秒前
源源源完成签到 ,获得积分10
27秒前
长情黄蜂发布了新的文献求助10
30秒前
FashionBoy应助zf2023采纳,获得10
32秒前
32秒前
38秒前
Drxie发布了新的文献求助10
43秒前
英俊的铭应助AA采纳,获得10
44秒前
一夜很静应助蔡从安采纳,获得10
52秒前
一夜很静应助蔡从安采纳,获得10
52秒前
香蕉觅云应助yuebaoji采纳,获得10
52秒前
52秒前
赘婿应助刘泽千采纳,获得30
56秒前
AA发布了新的文献求助10
56秒前
gaw2008完成签到,获得积分10
57秒前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
蔡从安完成签到,获得积分20
1分钟前
yuebaoji发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zf2023发布了新的文献求助10
1分钟前
思源应助陌上花开采纳,获得10
1分钟前
刘泽千完成签到,获得积分10
1分钟前
梦回发布了新的文献求助80
1分钟前
1分钟前
1分钟前
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
zf2023完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832