作者
Hongting Yan,Yingjie Li,Bing Yang,Fengxi Long,Zhu Yang,Dongxin Tang
摘要
The purpose of this study is to investigate the main active components and potential mechanisms of action of Yiyi Fuzi Baijiang powder against colorectal cancer by network pharmacology and molecular docking. Firstly, the TCMSP database was used to search for the active ingredients and targets of Yiyi Fuzi Baijiang powder, and colorectal cancer disease genes were collected through GeneCards and DisGeNET database. The intersection genes between Yiyi Fuzi Baijiang powder and colorectal cancer were then found using the web program Venny 2.1.0. Next, a protein interaction network was constructed using the STRING database, and Cytoscape 3.7.1 was used to screen and display the main targets. The David database uses functional Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis to examine key targets. To filter the primary active components, an ”active ingredient-target-pathway” network was built using Cytoscape 3.7.1. Finally, AutoDockTool and PyMOL were used to validate molecular docking. Yiyi Fuzi Baijiang powder and CRC yield 176 intersection targets. Quercetin, luteolin,kaempferol, stigmasterol, and β-sitosterol are the main active substances, whereas HSP90AA1, TP53, JUN, AKT1, and MAPK1 are the main targets. Yiyi Fuzi Baijiang powder may influence the PI3K-Akt signaling pathway, TNF signaling route, and IL-17 signaling pathway, which are involved in transcription, gene expression, apoptosis and proliferation regulation, among other biological processes, according to GO and KEGG enrichment analyses. The results of the molecular docking demonstrated that all of the major targets could be strongly bound by the core active chemicals in Yiyi Fuzi Baijiang powder. By simultaneously controlling several active components’ target genes and associated signaling pathways, Yiyi Fuzi Baijiang powder may slow the advancement of colorectal cancer by controlling apoptosis, proliferation, and the binding of proteins and enzymes.