Using stochastic programming to train neural network approximation of nonlinear MPC laws

人工神经网络 非线性系统 控制理论(社会学) 计算机科学 法学 数学 人工智能 控制(管理) 物理 政治学 量子力学
作者
Yun Li,Kaixun Hua,Yankai Cao
出处
期刊:Automatica [Elsevier]
卷期号:146: 110665-110665 被引量:10
标识
DOI:10.1016/j.automatica.2022.110665
摘要

To facilitate the real-time implementation of nonlinear model predictive control (NMPC), this paper proposes a deep learning-based NMPC scheme, in which the NMPC law is approximated via a deep neural network (DNN). To optimize the DNN controller, a novel “optimize and train” architecture is designed, where the processes of data generation and neural network training are combined together to result in a single large-scale stochastic optimization problem. Unlike the conventional “optimize then train” approach, our proposed one directly optimizes the closed-loop performance of the DNN controller over a finite horizon for a number of initial states. The important features of our proposed scheme are that it can deal with set-valued optimal MPC input, and a probabilistic guarantee of constraint satisfaction can be concluded for the closed-loop system without simulating the DNN controller. With our proposed scheme, an increased number of training scenarios leads to improved constraint satisfaction of the derived DNN controller, which is not necessarily true for the “optimize then train” approach. Statistical approaches for validating closed-loop control performance are also discussed. Furthermore, computational methods are introduced to efficiently solve the resulting stochastic optimization problem. The effectiveness of the proposed scheme is extensively illustrated with several numerical simulations. Compared with the conventional “optimize then train” approach, our proposed approach exhibits better closed-loop constraint satisfaction for all considered case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助CY采纳,获得10
1秒前
1秒前
汪鸡毛完成签到 ,获得积分10
1秒前
李爱国应助半夏采纳,获得10
1秒前
uziMOF发布了新的文献求助10
1秒前
薰硝壤应助30采纳,获得50
1秒前
2秒前
zzzz发布了新的文献求助10
3秒前
wen应助星星采纳,获得20
4秒前
葫芦发布了新的文献求助50
4秒前
小闹发布了新的文献求助10
4秒前
5秒前
6秒前
8秒前
8秒前
东丶完成签到,获得积分10
8秒前
8秒前
彭于晏应助逢考必过采纳,获得10
10秒前
俏皮的一德完成签到,获得积分10
11秒前
11秒前
CY发布了新的文献求助10
11秒前
12秒前
大大小小发布了新的文献求助10
13秒前
夹心饼干关注了科研通微信公众号
13秒前
14秒前
CoCoco完成签到,获得积分10
14秒前
拼搏老九发布了新的文献求助10
15秒前
汪鸡毛发布了新的文献求助10
15秒前
16秒前
16秒前
tonstark完成签到,获得积分10
16秒前
领导范儿应助俭朴白猫采纳,获得10
16秒前
假装超人会飞完成签到,获得积分10
17秒前
上官若男应助十米采纳,获得10
17秒前
脑洞疼应助七七八八采纳,获得10
18秒前
小北发布了新的文献求助10
18秒前
11完成签到,获得积分10
18秒前
18秒前
简洁应助研友_8415kL采纳,获得20
18秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1500
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Decision Theory 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2988343
求助须知:如何正确求助?哪些是违规求助? 2649526
关于积分的说明 7158953
捐赠科研通 2283573
什么是DOI,文献DOI怎么找? 1210766
版权声明 592454
科研通“疑难数据库(出版商)”最低求助积分说明 591239