挖掘机
地形
机器人
控制器(灌溉)
控制工程
过程(计算)
移动机器人
计算机科学
机器人控制
远程控制
模拟
工程类
人工智能
计算机硬件
地理
机械工程
生物
操作系统
地图学
农学
作者
Ajish Babu,Leon C. Danter,Pierre Willenbrock,Sankaranarayanan Natarajan,Daniel Kuehn,Frank Kirchner
出处
期刊:Automatisierungstechnik
[Oldenbourg Wissenschaftsverlag]
日期:2022-10-01
卷期号:70 (10): 876-887
标识
DOI:10.1515/auto-2022-0056
摘要
Abstract The Autonomous Rough Terrain Excavator Robot (ARTER) is a retrofitted walking excavator developed for remote and autonomous operations in environments hostile to humans. This work highlights the key developments related to this robot: system design, terrain adaption controller, and high-level process controller. The original walking excavator is retrofitted with sensors, hydraulic valves, computation devices, etc., to automate it. The terrain adaption controller, which adapts the wheels automatically to the underlying uneven terrain, is implemented using deep reinforcement learning. The tasks for the robot are complex and require switching between autonomy and remote operations. Hence, a custom high-level process controller, based on behavior trees, which helps the operator control complex tasks for the robot, is developed. The remote control and autonomous behaviors of the robot are evaluated for realistic scenarios performed in a test environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI