Early-warning of unsafe hoisting operations: An integration of digital twin and knowledge graph

计算机科学 图形 知识图 计算机安全 理论计算机科学 人工智能
作者
Weiguang Jiang,Yuhan Liu,Ke Chen,Yihong Liu,Lieyun Ding
出处
期刊:Developments in the built environment [Elsevier]
卷期号:19: 100490-100490
标识
DOI:10.1016/j.dibe.2024.100490
摘要

Unsafe hoisting operations have been consistently associated with numerous safety incidents involving tower cranes. Currently, the predominant measures to mitigate these operations center around comprehensive training and education, emphasizing standardized protocols prior to hoisting activities. Despite concerted efforts in this direction, a conspicuous research gap persists in early-warning mechanisms during the construction phase. This paper aims to address this gap by proposing an innovative early-warning methodology, inspired by the principles of digital twin and knowledge graph. We firstly introduce a digital twin framework designed to mirror the real-time operational status of the tower crane. This framework enables the immediate detection of deviations or infractions as they occur. Subsequently, we develop a knowledge graph capable of promptly identifying unsafe hoisting operations by leveraging real-time data obtained from the digital twin. To validate the efficacy of our proposed methodology, we construct a scaled-down replica of a tower crane and establish a tailored digital twin system. The findings of a series of experimental trials prominently underscore the system's capability to generate timely alerts in response to unsafe hoisting operations while maintaining an impressively low rate of false alarms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
可燃冰发布了新的文献求助10
2秒前
桐桐应助吾儿坤采纳,获得10
2秒前
科研通AI2S应助钟钟钟采纳,获得10
2秒前
4秒前
4秒前
赘婿应助KoitoYuu采纳,获得10
6秒前
6秒前
一二发布了新的文献求助10
6秒前
司徒文青应助清狂采纳,获得50
6秒前
马佳凯完成签到,获得积分20
7秒前
冷酷非笑完成签到,获得积分10
8秒前
8秒前
科目三应助仁爱沁采纳,获得10
8秒前
ohwhale完成签到 ,获得积分10
8秒前
9秒前
实验狗发布了新的文献求助10
9秒前
10秒前
10秒前
orixero应助niki采纳,获得10
10秒前
积极又向上完成签到,获得积分10
10秒前
Akim应助稳重海豚采纳,获得10
11秒前
xhxh发布了新的文献求助10
11秒前
传奇3应助will采纳,获得10
12秒前
kangwer完成签到,获得积分10
13秒前
xiaoyu发布了新的文献求助10
13秒前
可爱的石头完成签到,获得积分10
14秒前
14秒前
借一颗糖完成签到,获得积分10
15秒前
xhxh完成签到,获得积分10
15秒前
16秒前
行道吉安发布了新的文献求助10
16秒前
Olivergaga发布了新的文献求助10
16秒前
wandaiji完成签到,获得积分10
16秒前
安迪宝刚发布了新的文献求助10
17秒前
liangsr5发布了新的文献求助30
17秒前
17秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469850
求助须知:如何正确求助?哪些是违规求助? 3063049
关于积分的说明 9081269
捐赠科研通 2753307
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698084
科研通“疑难数据库(出版商)”最低求助积分说明 698028