反向
领域(数学分析)
反问题
过程(计算)
透明度(行为)
计算机科学
学习迁移
吸收(声学)
传输(计算)
频域
相(物质)
算法
人工智能
光学
物理
数学
计算机视觉
几何学
数学分析
操作系统
量子力学
计算机安全
并行计算
作者
Fan Gao,Zhihao Ou,Chenchen Yang,Jinpeng Yang,Juan Deng,Bo Yan
出处
期刊:Optics Letters
[The Optical Society]
日期:2024-04-12
卷期号:49 (10): 2693-2693
摘要
In this Letter, a transfer learning method is proposed to complete design tasks on heterogeneous metasurface datasets with distinct functionalities. Through fine-tuning the inverse design network and freezing the parameters of hidden layers, we successfully transfer the metasurface inverse design knowledge from the electromagnetic-induced transparency (EIT) domain to the three target domains of EIT (different design), absorption, and phase-controlled metasurface. Remarkably, in comparison to the source domain dataset, a minimum of only 700 target domain samples is required to complete the training process. This work presents a significant solution to lower the data threshold for the inverse design process and provides the possibility of knowledge transfer between different domain metasurface datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI