Cell–Surface Binding of DNA Nanostructures for Enhanced Intracellular and Intranuclear Delivery

细胞内 生物物理学 细胞 纳米技术 内化 材料科学 表面改性 细胞膜 药物输送 溶解 纳米棒 细胞生物学 化学 生物 生物化学 物理化学
作者
Weitao Wang,Bhavya Chopra,Vismaya Walawalkar,Zijuan Liang,Rebekah Adams,Markus Deserno,Xi Ren,R. E. Taylor
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 15783-15797
标识
DOI:10.1021/acsami.3c18068
摘要

DNA nanostructures (DNs) have found increasing use in biosensing, drug delivery, and therapeutics because of their customizable assembly, size and shape control, and facile functionalization. However, their limited cellular uptake and nuclear delivery have hindered their effectiveness in these applications. Here, we demonstrate the potential of applying cell-surface binding as a general strategy to enable rapid enhancement of intracellular and intranuclear delivery of DNs. By targeting the plasma membrane via cholesterol anchors or the cell-surface glycocalyx using click chemistry, we observe a significant 2 to 8-fold increase in the cellular uptake of three distinct types of DNs that include nanospheres, nanorods, and nanotiles, within a short time frame of half an hour. Several factors are found to play a critical role in modulating the uptake of DNs, including their geometries, the valency, positioning and spacing of binding moieties. Briefly, nanospheres are universally preferable for cell surface attachment and internalization. However, edge-decorated nanotiles compensate for their geometry deficiency and outperform nanospheres in both categories. In addition, we confirm the short-term structural stability of DNs by incubating them with cell medium and cell lysate. Further, we investigate the endocytic pathway of cell-surface bound DNs and reveal that it is an interdependent process involving multiple pathways, similar to those of unmodified DNs. Finally, we demonstrate that cell-surface attached DNs exhibit a substantial enhancement in the intranuclear delivery. Our findings present an application that leverages cell-surface binding to potentially overcome the limitations of low cellular uptake, which may strengthen and expand the toolbox for effective cellular and nuclear delivery of DNA nanostructure systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助笛卡尔采纳,获得10
刚刚
刚刚
LHL发布了新的文献求助10
1秒前
那一片海完成签到,获得积分10
2秒前
Hello应助qq小兵采纳,获得10
3秒前
夏大雨发布了新的文献求助10
3秒前
zwf完成签到,获得积分20
3秒前
Sally完成签到,获得积分20
3秒前
3秒前
墨苏完成签到,获得积分10
4秒前
trust完成签到,获得积分10
4秒前
奶油小羊完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
光亮的灭绝完成签到,获得积分10
5秒前
研友_nxV4m8发布了新的文献求助30
5秒前
6秒前
Max发布了新的文献求助10
6秒前
hanfuren完成签到,获得积分10
7秒前
彩色橘子完成签到 ,获得积分10
7秒前
Singularity应助wudi19887采纳,获得10
7秒前
肉脸小鱼完成签到,获得积分10
7秒前
7秒前
zwf发布了新的文献求助10
8秒前
8秒前
8秒前
开朗的兰发布了新的文献求助10
9秒前
9秒前
打打应助lakelili采纳,获得10
9秒前
小果子完成签到 ,获得积分10
10秒前
10秒前
肉脸小鱼发布了新的文献求助10
10秒前
邓博发布了新的文献求助10
11秒前
11秒前
王DD完成签到,获得积分10
12秒前
迷路凝珍发布了新的文献求助10
12秒前
直率荠完成签到 ,获得积分10
13秒前
侠女完成签到 ,获得积分10
13秒前
清爽代丝完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883