A self-attention-based CNN-Bi-LSTM model for accurate state-of-charge estimation of lithium-ion batteries

锂(药物) 荷电状态 离子 国家(计算机科学) 电荷(物理) 计算机科学 估计 人工智能 模式识别(心理学) 物理 算法 工程类 电池(电) 心理学 量子力学 功率(物理) 系统工程 精神科
作者
Zeinab Sherkatghanad,Amin Ghazanfari,Vladimir Makarenkov
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:88: 111524-111524 被引量:26
标识
DOI:10.1016/j.est.2024.111524
摘要

In the quest for clean and efficient energy solutions, lithium-ion batteries have emerged at the forefront of technological innovation. Accurate state-of-charge (SOC) estimation across a broad temperature range is essential for extending battery longevity, and enduring effective management of overcharge and over-discharge conditions. However, prevailing challenges persist in achieving precise SOC estimates and generalizing across a wide temperature range, particularly at lower temperatures. Our comparative analysis reveals that, while a single-layer bidirectional LSTM model with a self-attention mechanism achieves remarkable SOC estimation accuracy at room temperature, the intricacies of SOC estimation at lower temperatures necessitate the incorporation of more hidden layers and more complex network architecture to capture intricate features influencing battery dynamics. Hence, we propose a deep learning model, based on convolutional neural networks integrating bidirectional long short-term memory and self-attention mechanism (CNN-Bi-LSTM-AM), specifically designed to tackle the challenges of achieving accurate SOC estimations across a wide temperature range. The proposed model demonstrates proficiency in capturing both spatial and temporal dependencies critical for lithium-ion battery SOC estimation. Furthermore, the integration of a self-attention mechanism enhances the model's adeptness to discern pertinent features and patterns within the dataset, thereby improving its overall performance and robustness, even in sub-room temperature environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼生发布了新的文献求助10
刚刚
朱先生完成签到 ,获得积分10
1秒前
dalian完成签到,获得积分10
1秒前
CR7应助nethebyryrh采纳,获得20
2秒前
852应助杨小黑采纳,获得10
2秒前
wanci应助科研小鱼采纳,获得10
3秒前
3秒前
FashionBoy应助song采纳,获得10
4秒前
李静霆发布了新的文献求助10
4秒前
StayGolDay完成签到,获得积分10
4秒前
所填完成签到,获得积分10
4秒前
4秒前
4秒前
聆听完成签到,获得积分10
5秒前
李若暄发布了新的文献求助10
5秒前
科目三应助cc采纳,获得10
5秒前
5秒前
5秒前
5秒前
Akim应助shuibizai采纳,获得10
6秒前
star完成签到,获得积分10
8秒前
领导范儿应助a成采纳,获得10
8秒前
9秒前
英吉利25发布了新的文献求助30
9秒前
典雅的静发布了新的文献求助10
9秒前
10秒前
南瓜气气发布了新的文献求助10
10秒前
暮然发布了新的文献求助10
10秒前
邓佳鑫Alan应助Moon采纳,获得10
11秒前
CQ完成签到,获得积分10
11秒前
元气糖发布了新的文献求助10
12秒前
13秒前
踏实的石头完成签到,获得积分10
14秒前
SYLH应助小青蛙OA采纳,获得10
14秒前
15秒前
Luu完成签到,获得积分10
15秒前
cc完成签到 ,获得积分20
16秒前
焓晓芈发布了新的文献求助10
16秒前
Bismarck发布了新的文献求助10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344