Predictive Model to Guide Brain Magnetic Resonance Imaging Surveillance in Patients With Metastatic Lung Cancer: Impact on Real-World Outcomes

脑转移 医学 磁共振成像 转移 队列 累积发病率 内科学 肿瘤科 肺癌 癌症 放射科
作者
Julie Tsu-Yu Wu,Victoria Y. Ding,Sophia J. Luo,Eunji Choi,Jessica Hellyer,Nathaniel Myall,Solomon Henry,Daniel L. Rubin,Henning Stehr,Hanlee P. Ji,Seema Nagpal,Melanie Hayden Gephart,Heather A. Wakelee,Joel W. Neal,Summer S. Han
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号: (6)
标识
DOI:10.1200/po.22.00220
摘要

PURPOSE Brain metastasis is common in lung cancer, and treatment of brain metastasis can lead to significant morbidity. Although early detection of brain metastasis may improve outcomes, there are no prediction models to identify high-risk patients for brain magnetic resonance imaging (MRI) surveillance. Our goal is to develop a machine learning–based clinicogenomic prediction model to estimate patient-level brain metastasis risk. METHODS A penalized regression competing risk model was developed using 330 patients diagnosed with lung cancer between January 2014 and June 2019 and followed through June 2021 at Stanford HealthCare. The main outcome was time from the diagnosis of distant metastatic disease to the development of brain metastasis, death, or censoring. RESULTS Among the 330 patients, 84 (25%) developed brain metastasis over 627 person-years, with a 1-year cumulative brain metastasis incidence of 10.2% (95% CI, 6.8 to 13.6). Features selected for model inclusion were histology, cancer stage, age at diagnosis, primary site, and RB1 and ALK alterations. The prediction model yielded high discrimination (area under the curve 0.75). When the cohort was stratified by risk using a 1-year risk threshold of > 14.2% (85th percentile), the high-risk group had increased 1-year cumulative incidence of brain metastasis versus the low-risk group (30.8% v 6.1%, P < .01). Of 48 high-risk patients, 24 developed brain metastasis, and of these, 12 patients had brain metastasis detected more than 7 months after last brain MRI. Patients who missed this 7-month window had larger brain metastases (58% v 33% largest diameter > 10 mm; odds ratio, 2.80, CI, 0.51 to 13) versus those who had MRIs more frequently. CONCLUSION The proposed model can identify high-risk patients, who may benefit from more intensive brain MRI surveillance to reduce morbidity of subsequent treatment through early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsx完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
英俊的铭应助等待洙采纳,获得10
1秒前
1秒前
科研通AI2S应助任一采纳,获得10
2秒前
w8816完成签到,获得积分10
2秒前
叶萧辰完成签到,获得积分10
4秒前
5秒前
5秒前
bakos完成签到,获得积分10
5秒前
6秒前
Akim应助北斗HH采纳,获得10
6秒前
7秒前
7秒前
椰椰芋泥酱完成签到 ,获得积分10
8秒前
无花果应助尊敬的冬瓜采纳,获得10
8秒前
牛马发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI2S应助oh233采纳,获得10
12秒前
皓月当空发布了新的文献求助30
12秒前
13秒前
JamesPei应助TheDay采纳,获得10
13秒前
13秒前
13秒前
丞丞汁儿发布了新的文献求助10
14秒前
yo1nang发布了新的文献求助10
14秒前
听寒发布了新的文献求助10
16秒前
木冉发布了新的文献求助10
16秒前
北斗HH发布了新的文献求助10
16秒前
等待洙发布了新的文献求助10
17秒前
Cookie完成签到,获得积分10
17秒前
田様应助爱撒娇的无施采纳,获得10
19秒前
JK157完成签到,获得积分10
20秒前
Cookie发布了新的文献求助30
21秒前
江峰发布了新的文献求助10
22秒前
韦灵珊完成签到,获得积分20
23秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514