圆柱
涡激振动
流量(数学)
机械
振动
涡流
共振(粒子物理)
航程(航空)
能量(信号处理)
能量收集
流速
自由面
能量流
材料科学
物理
几何学
声学
数学
原子物理学
量子力学
复合材料
作者
Tao Yang,Zhumei Luo,Fengrong Yu,Jun Li,Suoming Gao
摘要
Numerical and experimental studies of energy harvesting driven by vortex-induced vibration (VIV) are currently focused on arranging the energy-captured structure in a uniform incoming flow at a certain depth, ignoring the effect of the free surface on VIV. The fluid–structure coupling effect can be enhanced when a column-group structure with rigid connection is arranged under uniform flow, which is helpful for the structure to concentrate hydrokinetic energy from low-velocity water flow. In this paper, a staggered arrangement of a four-cylinder oscillator with rigid connections is proposed as the energy converter, and the fluid–solid interaction numerical method is carried out to simulate the VIV of the four-cylinder structure under single-phase flow and free surfaces. In U* = 2–16 (flow velocity U = 0.16–1.28 m/s), the results of the energy harvesting magnitude, efficiency, and density of the four-cylinder oscillator under the arrangement depth ratios S* = 2, S* = 3, S* = 4, and S* = 5 are compared with the results obtained in the single-phase flow. It was found that the column-group structure has a broader resonance range of VIV in single-phase flows than a single cylinder and can capture more hydrokinetic energy concentratedly from low-velocity flow. The VIV responses of the four-cylinder oscillator are suppressed at low submergence depths with a narrower resonance range, and its captured energy is reduced. In contrast, at high submergence depth ratio S*, the VIV responses are not suppressed obviously by the free surface. The magnitude of captured energy, energy-harvesting efficiency, and density of the four-cylinder structure are basically consistent with the results obtained in single-phase flow at S* = 5.
科研通智能强力驱动
Strongly Powered by AbleSci AI