Vigor identification of maize seeds by using hyperspectral imaging combined with multivariate data analysis

高光谱成像 模式识别(心理学) 人工智能 线性判别分析 预处理器 支持向量机 平滑的 特征(语言学) 随机森林 变量消去 计算机科学 数学 特征向量 统计 语言学 哲学 推论
作者
Peng Xu,Yunpeng Zhang,Qian Tan,Kang Xu,Wenbin Sun,Jiejie Xing,Ranbing Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:126: 104361-104361 被引量:32
标识
DOI:10.1016/j.infrared.2022.104361
摘要

As an important food crop in China, rapid and accurate discrimination of maize seed vigor is crucial for agricultural development. In this study, 1,680 maize seeds were subjected to artificial accelerated aging treatment with "Zhengdan 958″ as the research object to verify the difference in vigor between damaged and healthy seeds based on the results of the standard germination tests. A Hyperspectral imaging (HSI) system was used to obtain spectral information of samples, and the original spectra were preprocessed using second-order Savitzky-Golay smoothing (SG-2), first derivative (FD), detrending (DE), standard normal variate (SNV), and multiplicative scatter correction (MSC) methods. The 49, 60, 54, and 40 numbers of feature wavelengths (nm) were extracted from the processed spectra using successive projections algorithm (SPA), uninformative variable elimination (UVE), interval random frog (IRF), and iteratively variable subset optimization (IVSO), respectively. The decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), random forest (RF), and artificial neural network (ANN) models were constructed based on full wavelength and feature wavelength, of which the best model was DE-UVE-ANN, and its identification accuracy reached 95.24 %. The experimental results show that the UVE algorithm is the most effective method for preprocessing, and the accuracy of LDA and ANN models built based on it is above 85.71 % and 89.76 %, respectively. In addition, the hyperspectral images were visualized based on an object-oriented approach to observe intuitive identification results. The results indicate that the proposed method is instructive for the vigor identification of maize seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的西瓜完成签到,获得积分10
刚刚
1秒前
北冥鱼发布了新的文献求助10
1秒前
白板完成签到,获得积分20
2秒前
4秒前
4秒前
Lucas应助Champion采纳,获得10
4秒前
有个女孩叫阿娇完成签到,获得积分10
4秒前
丰富以亦发布了新的文献求助10
5秒前
李爱国应助zzzz采纳,获得10
5秒前
xinxin0902应助研狗采纳,获得20
5秒前
5秒前
古人说发布了新的文献求助20
5秒前
yaya发布了新的文献求助10
6秒前
6秒前
Akim应助Atalent采纳,获得10
6秒前
英姑应助千衷采纳,获得10
6秒前
ppat5012完成签到,获得积分10
6秒前
美味肉蟹煲完成签到,获得积分10
7秒前
歪比巴卜发布了新的文献求助10
7秒前
7秒前
7秒前
DEF完成签到 ,获得积分10
7秒前
zero完成签到,获得积分10
7秒前
传奇3应助池林采纳,获得10
7秒前
钟馗完成签到,获得积分10
7秒前
搞科研的废废完成签到,获得积分10
7秒前
白板发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
酷波er应助温柔的戎采纳,获得10
8秒前
Duang完成签到,获得积分20
8秒前
8秒前
柒月发布了新的文献求助10
8秒前
8秒前
朴素友安完成签到 ,获得积分10
8秒前
8秒前
bkagyin应助Linming采纳,获得10
9秒前
饱满的煎饼完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887