Vigor identification of maize seeds by using hyperspectral imaging combined with multivariate data analysis

高光谱成像 模式识别(心理学) 人工智能 线性判别分析 预处理器 支持向量机 平滑的 特征(语言学) 随机森林 变量消去 计算机科学 数学 特征向量 统计 语言学 哲学 推论
作者
Peng Xu,Yunpeng Zhang,Qian Tan,Kang Xu,Wenbin Sun,Jiejie Xing,Ranbing Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:126: 104361-104361 被引量:32
标识
DOI:10.1016/j.infrared.2022.104361
摘要

As an important food crop in China, rapid and accurate discrimination of maize seed vigor is crucial for agricultural development. In this study, 1,680 maize seeds were subjected to artificial accelerated aging treatment with "Zhengdan 958″ as the research object to verify the difference in vigor between damaged and healthy seeds based on the results of the standard germination tests. A Hyperspectral imaging (HSI) system was used to obtain spectral information of samples, and the original spectra were preprocessed using second-order Savitzky-Golay smoothing (SG-2), first derivative (FD), detrending (DE), standard normal variate (SNV), and multiplicative scatter correction (MSC) methods. The 49, 60, 54, and 40 numbers of feature wavelengths (nm) were extracted from the processed spectra using successive projections algorithm (SPA), uninformative variable elimination (UVE), interval random frog (IRF), and iteratively variable subset optimization (IVSO), respectively. The decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), random forest (RF), and artificial neural network (ANN) models were constructed based on full wavelength and feature wavelength, of which the best model was DE-UVE-ANN, and its identification accuracy reached 95.24 %. The experimental results show that the UVE algorithm is the most effective method for preprocessing, and the accuracy of LDA and ANN models built based on it is above 85.71 % and 89.76 %, respectively. In addition, the hyperspectral images were visualized based on an object-oriented approach to observe intuitive identification results. The results indicate that the proposed method is instructive for the vigor identification of maize seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一亦可完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
开放芝麻完成签到 ,获得积分10
2秒前
LLLL完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
wwsss完成签到,获得积分10
5秒前
Polylactic完成签到 ,获得积分10
6秒前
星空发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
8秒前
澄钰羽完成签到,获得积分10
9秒前
加减乘除发布了新的文献求助10
9秒前
肥鹏完成签到,获得积分10
10秒前
能干世倌完成签到,获得积分10
11秒前
杨玉轩完成签到,获得积分10
11秒前
彪壮的绮烟完成签到,获得积分10
11秒前
饭煲完成签到,获得积分10
11秒前
李健应助TT采纳,获得10
11秒前
月yue完成签到,获得积分10
12秒前
温暖的钻石完成签到,获得积分10
12秒前
亚铁氰化钾完成签到,获得积分10
13秒前
Jiangaook完成签到,获得积分10
13秒前
夏天完成签到,获得积分10
15秒前
深情安青应助饭煲采纳,获得10
15秒前
狠毒的小龙虾完成签到,获得积分10
16秒前
博士完成签到 ,获得积分10
16秒前
小丸子完成签到,获得积分10
17秒前
一小会完成签到,获得积分10
17秒前
pw完成签到 ,获得积分10
18秒前
make217完成签到 ,获得积分10
19秒前
热心的冬菱完成签到 ,获得积分10
20秒前
活泼溪流完成签到,获得积分10
20秒前
花生完成签到 ,获得积分10
20秒前
ftc完成签到,获得积分10
20秒前
20秒前
乘凉完成签到,获得积分10
21秒前
21秒前
小刘爱科研完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131