Vigor identification of maize seeds by using hyperspectral imaging combined with multivariate data analysis

高光谱成像 模式识别(心理学) 人工智能 线性判别分析 预处理器 支持向量机 平滑的 特征(语言学) 随机森林 变量消去 计算机科学 数学 特征向量 统计 哲学 语言学 推论
作者
Peng Xu,Yunpeng Zhang,Qian Tan,Kang Xu,Wenbin Sun,Jiejie Xing,Ranbing Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:126: 104361-104361 被引量:12
标识
DOI:10.1016/j.infrared.2022.104361
摘要

As an important food crop in China, rapid and accurate discrimination of maize seed vigor is crucial for agricultural development. In this study, 1,680 maize seeds were subjected to artificial accelerated aging treatment with "Zhengdan 958″ as the research object to verify the difference in vigor between damaged and healthy seeds based on the results of the standard germination tests. A Hyperspectral imaging (HSI) system was used to obtain spectral information of samples, and the original spectra were preprocessed using second-order Savitzky-Golay smoothing (SG-2), first derivative (FD), detrending (DE), standard normal variate (SNV), and multiplicative scatter correction (MSC) methods. The 49, 60, 54, and 40 numbers of feature wavelengths (nm) were extracted from the processed spectra using successive projections algorithm (SPA), uninformative variable elimination (UVE), interval random frog (IRF), and iteratively variable subset optimization (IVSO), respectively. The decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), random forest (RF), and artificial neural network (ANN) models were constructed based on full wavelength and feature wavelength, of which the best model was DE-UVE-ANN, and its identification accuracy reached 95.24 %. The experimental results show that the UVE algorithm is the most effective method for preprocessing, and the accuracy of LDA and ANN models built based on it is above 85.71 % and 89.76 %, respectively. In addition, the hyperspectral images were visualized based on an object-oriented approach to observe intuitive identification results. The results indicate that the proposed method is instructive for the vigor identification of maize seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
布丁完成签到 ,获得积分10
5秒前
5秒前
5秒前
Lucas应助花园荆棘采纳,获得10
6秒前
晚星发布了新的文献求助10
7秒前
爱科研的小吴完成签到 ,获得积分10
8秒前
赫里奈乐完成签到,获得积分10
9秒前
小小王发布了新的文献求助10
12秒前
15秒前
16秒前
19秒前
21秒前
21秒前
22秒前
23秒前
花园荆棘发布了新的文献求助10
23秒前
SG完成签到 ,获得积分10
24秒前
小王快毕业完成签到,获得积分10
25秒前
夹心发布了新的文献求助10
25秒前
AAA下水工王哥完成签到,获得积分10
26秒前
Cho发布了新的文献求助10
28秒前
科研通AI2S应助小仙女采纳,获得10
28秒前
Leo完成签到,获得积分10
28秒前
28秒前
liian7应助CC来一份升级采纳,获得10
29秒前
大雁完成签到,获得积分10
29秒前
30秒前
斯文败类应助机灵亦旋采纳,获得10
31秒前
华仔应助夹心采纳,获得10
31秒前
min完成签到,获得积分10
32秒前
妮妮完成签到,获得积分10
32秒前
Owen应助懵懂的灭男采纳,获得10
34秒前
min发布了新的文献求助10
34秒前
34秒前
小小王完成签到,获得积分10
34秒前
zyh完成签到,获得积分10
34秒前
35秒前
38秒前
充电宝应助机灵的颜演采纳,获得10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464