Vigor identification of maize seeds by using hyperspectral imaging combined with multivariate data analysis

高光谱成像 模式识别(心理学) 人工智能 线性判别分析 预处理器 支持向量机 平滑的 特征(语言学) 随机森林 变量消去 计算机科学 数学 特征向量 统计 语言学 哲学 推论
作者
Peng Xu,Yunpeng Zhang,Qian Tan,Kang Xu,Wenbin Sun,Jiejie Xing,Ranbing Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:126: 104361-104361 被引量:32
标识
DOI:10.1016/j.infrared.2022.104361
摘要

As an important food crop in China, rapid and accurate discrimination of maize seed vigor is crucial for agricultural development. In this study, 1,680 maize seeds were subjected to artificial accelerated aging treatment with "Zhengdan 958″ as the research object to verify the difference in vigor between damaged and healthy seeds based on the results of the standard germination tests. A Hyperspectral imaging (HSI) system was used to obtain spectral information of samples, and the original spectra were preprocessed using second-order Savitzky-Golay smoothing (SG-2), first derivative (FD), detrending (DE), standard normal variate (SNV), and multiplicative scatter correction (MSC) methods. The 49, 60, 54, and 40 numbers of feature wavelengths (nm) were extracted from the processed spectra using successive projections algorithm (SPA), uninformative variable elimination (UVE), interval random frog (IRF), and iteratively variable subset optimization (IVSO), respectively. The decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), random forest (RF), and artificial neural network (ANN) models were constructed based on full wavelength and feature wavelength, of which the best model was DE-UVE-ANN, and its identification accuracy reached 95.24 %. The experimental results show that the UVE algorithm is the most effective method for preprocessing, and the accuracy of LDA and ANN models built based on it is above 85.71 % and 89.76 %, respectively. In addition, the hyperspectral images were visualized based on an object-oriented approach to observe intuitive identification results. The results indicate that the proposed method is instructive for the vigor identification of maize seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研小趴菜采纳,获得30
刚刚
Dding完成签到,获得积分10
刚刚
lnyi完成签到,获得积分20
刚刚
334niubi666完成签到 ,获得积分10
1秒前
pengpengpeng完成签到,获得积分10
1秒前
lee发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
大个应助Ghy采纳,获得10
2秒前
现代的大叔完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
4秒前
爱听歌的梦寒关注了科研通微信公众号
4秒前
SciGPT应助东哥采纳,获得10
4秒前
打打应助搞怪的金鑫采纳,获得10
4秒前
清新完成签到,获得积分10
5秒前
5秒前
迟迟完成签到,获得积分10
5秒前
5秒前
研友_pnxBe8完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助可靠的夜雪采纳,获得10
6秒前
华仔应助lei采纳,获得10
6秒前
Alex完成签到,获得积分10
6秒前
7秒前
所所应助闪闪雁采纳,获得10
7秒前
7秒前
刺1656完成签到,获得积分10
8秒前
8秒前
所所应助优秀真采纳,获得10
8秒前
迟迟发布了新的文献求助10
8秒前
NexusExplorer应助Azheng采纳,获得10
9秒前
sxpab发布了新的文献求助10
9秒前
凌发发布了新的文献求助10
9秒前
9秒前
就这发布了新的文献求助10
9秒前
lee完成签到,获得积分10
10秒前
10秒前
zbs发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297