Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow

算法 工作流程 密度泛函理论 计算机科学 材料科学 物理 量子力学 数据库
作者
Ryan Kingsbury,Ayush Gupta,Christopher J. Bartel,Jason M. Munro,Shyam Dwaraknath,Matthew K. Horton,Kristin A. Persson
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (1) 被引量:43
标识
DOI:10.1103/physrevmaterials.6.013801
摘要

Computational materials discovery efforts utilize hundreds or thousands of density functional theory calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability. However, high-throughput calculations at the higher metaGGA level of theory are becoming feasible. The strongly constrained and appropriately normed (SCAN) metaGGA functional offers superior accuracy to GGA across much of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from numerical instabilities that impede its use in high-throughput workflows. The recently developed ${\mathrm{r}}^{2}\mathrm{SCAN}$ metaGGA functional promises accuracy similar to SCAN in addition to more robust numerical performance. However, its performance compared to SCAN has yet to be evaluated over a large group of solid materials. In this paper, we compared ${\mathrm{r}}^{2}\mathrm{SCAN}$ and SCAN predictions for key properties of approximately 6000 solid materials using a newly developed high-throughput computational workflow. We find that ${\mathrm{r}}^{2}\mathrm{SCAN}$ predicts formation energies more accurately than SCAN and PBEsol for both strongly and weakly bound materials and that ${\mathrm{r}}^{2}\mathrm{SCAN}$ predicts systematically larger lattice constants than SCAN. We also find that ${\mathrm{r}}^{2}\mathrm{SCAN}$ requires modestly fewer computational resources than SCAN and offers significantly more reliable convergence. Thus, our large-scale benchmark confirms that ${\mathrm{r}}^{2}\mathrm{SCAN}$ has delivered on its promises of numerical efficiency and accuracy, making it a preferred choice for high-throughput metaGGA calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助负责冰烟采纳,获得10
刚刚
和谐的孱完成签到,获得积分10
刚刚
星辰大海应助申左一采纳,获得10
1秒前
随风而动123完成签到,获得积分10
1秒前
ldkl应助拖拉机采纳,获得30
1秒前
科研通AI5应助zy采纳,获得10
2秒前
yuehui完成签到,获得积分10
2秒前
紧张的冷卉完成签到,获得积分10
2秒前
勤劳樱发布了新的文献求助10
2秒前
晨芒完成签到,获得积分10
3秒前
3秒前
思源应助tthh采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
wanci应助风趣飞柏采纳,获得50
5秒前
小二郎应助孤独衣采纳,获得10
5秒前
汉堡包应助不够萌采纳,获得10
5秒前
浩离完成签到,获得积分10
5秒前
5秒前
6秒前
爆米花应助DT采纳,获得10
6秒前
烟花应助程程采纳,获得10
6秒前
星辰大海应助危机的沛山采纳,获得10
6秒前
丘比特应助yuqinglei采纳,获得10
7秒前
时不时完成签到,获得积分10
7秒前
liz发布了新的文献求助10
7秒前
DYQin发布了新的文献求助10
7秒前
7秒前
7秒前
Jasper应助花花采纳,获得10
7秒前
懒懒大王完成签到,获得积分10
7秒前
个性楷瑞发布了新的文献求助10
8秒前
8秒前
传奇3应助卢立欣采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
EvaHo完成签到,获得积分10
9秒前
玄音完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371