Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow

算法 工作流程 密度泛函理论 计算机科学 材料科学 物理 量子力学 数据库
作者
Ryan Kingsbury,Ayush Gupta,Christopher J. Bartel,Jason M. Munro,Shyam Dwaraknath,Matthew K. Horton,Kristin A. Persson
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (1) 被引量:43
标识
DOI:10.1103/physrevmaterials.6.013801
摘要

Computational materials discovery efforts utilize hundreds or thousands of density functional theory calculations to predict material properties. Historically, such efforts have performed calculations at the generalized gradient approximation (GGA) level of theory due to its efficient compromise between accuracy and computational reliability. However, high-throughput calculations at the higher metaGGA level of theory are becoming feasible. The strongly constrained and appropriately normed (SCAN) metaGGA functional offers superior accuracy to GGA across much of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from numerical instabilities that impede its use in high-throughput workflows. The recently developed ${\mathrm{r}}^{2}\mathrm{SCAN}$ metaGGA functional promises accuracy similar to SCAN in addition to more robust numerical performance. However, its performance compared to SCAN has yet to be evaluated over a large group of solid materials. In this paper, we compared ${\mathrm{r}}^{2}\mathrm{SCAN}$ and SCAN predictions for key properties of approximately 6000 solid materials using a newly developed high-throughput computational workflow. We find that ${\mathrm{r}}^{2}\mathrm{SCAN}$ predicts formation energies more accurately than SCAN and PBEsol for both strongly and weakly bound materials and that ${\mathrm{r}}^{2}\mathrm{SCAN}$ predicts systematically larger lattice constants than SCAN. We also find that ${\mathrm{r}}^{2}\mathrm{SCAN}$ requires modestly fewer computational resources than SCAN and offers significantly more reliable convergence. Thus, our large-scale benchmark confirms that ${\mathrm{r}}^{2}\mathrm{SCAN}$ has delivered on its promises of numerical efficiency and accuracy, making it a preferred choice for high-throughput metaGGA calculations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助llj采纳,获得10
1秒前
calm完成签到 ,获得积分10
1秒前
块块的加隆满口袋完成签到 ,获得积分10
1秒前
2秒前
2秒前
木头人完成签到,获得积分10
3秒前
Shinkai39完成签到 ,获得积分10
3秒前
啦啦完成签到,获得积分10
4秒前
香菜完成签到,获得积分10
5秒前
7秒前
7秒前
什么我才是大萌萌应助LYY采纳,获得10
7秒前
pipei完成签到,获得积分20
7秒前
8秒前
故意的乐菱完成签到 ,获得积分10
8秒前
Sophia完成签到,获得积分10
8秒前
慕青应助王鑫玥采纳,获得10
9秒前
昂莫达完成签到,获得积分10
9秒前
sun完成签到,获得积分10
9秒前
读书的女人最美丽完成签到,获得积分10
9秒前
10秒前
鄢廷芮完成签到 ,获得积分10
10秒前
谦让寻凝完成签到 ,获得积分10
10秒前
亚当发布了新的文献求助10
10秒前
二橦完成签到,获得积分10
11秒前
heiner完成签到,获得积分10
11秒前
Fyl发布了新的文献求助10
12秒前
12秒前
空空完成签到,获得积分20
12秒前
13秒前
陶醉的天与完成签到 ,获得积分10
14秒前
14秒前
15秒前
空空发布了新的文献求助10
15秒前
科yt完成签到,获得积分10
17秒前
Leo完成签到,获得积分10
17秒前
lucky完成签到 ,获得积分10
18秒前
孤独天薇完成签到,获得积分10
18秒前
科研八戒完成签到,获得积分10
19秒前
SciGPT应助伯赏汝燕采纳,获得10
19秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆热工水力特性及安全审评关键问题研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052959
求助须知:如何正确求助?哪些是违规求助? 2710182
关于积分的说明 7419994
捐赠科研通 2354794
什么是DOI,文献DOI怎么找? 1246282
科研通“疑难数据库(出版商)”最低求助积分说明 606047
版权声明 595975