Differentially Private Byzantine-Robust Federated Learning

差别隐私 计算机科学 Byzantine容错 联合学习 对抗制 稳健性(进化) 对手 MNIST数据库 分布式学习 量子拜占庭协议 方案(数学) 协议(科学) 人工智能 机器学习 私人信息检索 计算机安全 深度学习 分布式计算 数据挖掘 容错 心理学 生物化学 教育学 替代医学 数学 化学 病理 数学分析 基因 医学
作者
Xu Ma,Xiaoqian Sun,Yuduo Wu,Zheli Liu,Xiaofeng Chen,Changyu Dong
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 3690-3701 被引量:41
标识
DOI:10.1109/tpds.2022.3167434
摘要

Federated learning is a collaborative machine learning framework where a global model is trained by different organizations under the privacy restrictions. Promising as it is, privacy and robustness issues emerge when an adversary attempts to infer the private information from the exchanged parameters or compromise the global model. Various protocols have been proposed to counter the security risks, however, it becomes challenging when one wants to make federated learning protocols robust against Byzantine adversaries while preserving the privacy of the individual participant. In this article, we propose a differentially private Byzantine-robust federated learning scheme (DPBFL) with high computation and communication efficiency. The proposed scheme is effective in preventing adversarial attacks launched by the Byzantine participants and achieves differential privacy through a novel aggregation protocol in the shuffle model. The theoretical analysis indicates that the proposed scheme converges to the approximate optimal solution with the learning error dependent on the differential privacy budget and the number of Byzantine participants. Experimental results on MNIST, FashionMNIST and CIFAR10 demonstrate that the proposed scheme is effective and efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王肖宁发布了新的文献求助10
1秒前
ding应助1816013153采纳,获得30
1秒前
FashionBoy应助小胡爱学习采纳,获得10
2秒前
今后应助拾柒采纳,获得10
2秒前
sun完成签到,获得积分10
3秒前
Ava应助陈篱采纳,获得10
3秒前
生动的豆芽完成签到 ,获得积分10
3秒前
123321完成签到,获得积分10
4秒前
庞mou完成签到,获得积分10
4秒前
LingC完成签到,获得积分10
5秒前
小可发布了新的文献求助10
7秒前
coolkid完成签到 ,获得积分0
9秒前
10秒前
11秒前
11秒前
14秒前
15秒前
16秒前
17秒前
巩志成完成签到,获得积分10
18秒前
wxyshare举报害羞映容求助涉嫌违规
18秒前
18秒前
Pan完成签到,获得积分10
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
嘿嘿发布了新的文献求助10
22秒前
cccui发布了新的文献求助10
22秒前
escape完成签到,获得积分10
25秒前
无花果应助Guan采纳,获得10
25秒前
25秒前
小胡爱学习完成签到,获得积分10
25秒前
果冻呀发布了新的文献求助10
26秒前
Owen应助科研苦行僧采纳,获得10
26秒前
27秒前
jia发布了新的文献求助10
27秒前
28秒前
wsy发布了新的文献求助20
28秒前
wyx发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093