润湿
催化作用
传质
材料科学
化学工程
相(物质)
纳米技术
表征(材料科学)
化学物理
化学
有机化学
复合材料
色谱法
工程类
作者
Run Shi,Lu Shang,Chao Zhou,Yunxuan Zhao,Tierui Zhang
出处
期刊:Exploration
[Wiley]
日期:2022-04-16
卷期号:2 (3)
被引量:35
摘要
Abstract Heterogeneous catalysis is inseparable from interfacial mass transfer and chemical reaction processes determined by the structure and microenvironment. Different from high‐temperature thermochemical processes, photo‐ and electrocatalysis operated at mild conditions often involve both gas and liquid phases, making it important but challenging to characterize the reaction process typically occurring at the gas–liquid–solid interface. Herein, we review the scope, feasibility, and limitation of ten types of currently available technologies used to characterize interfacial wettability and mass transfer properties of various triple‐phase catalytic reactions. The review summarizes techniques from macroscopic contact angle measurement to microscopic environment electron microscopy for investigating the wettability‐controlled structure of triple‐phase interfaces. Experimental and computational methods in revealing the interfacial mass transfer process have also been systematically discussed, followed by a perspective on the opportunities and challenges of advanced characterization methods to help understand the fundamental reaction mechanism of triple‐phase catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI