材料科学
电催化剂
兴奋剂
氨
氨生产
催化作用
电化学
质子化
反键分子轨道
光化学
自旋态
纳米技术
化学物理
无机化学
电子
物理化学
原子轨道
化学
电极
光电子学
有机化学
物理
离子
量子力学
作者
Yan Li,Yaxin Ji,Yingjie Zhao,Junxiang Chen,Sixing Zheng,Xiahan Sang,Bin Yang,Zhongjian Li,Lecheng Lei,Zhenhai Wen,Xinliang Feng,Yang Hou
标识
DOI:10.1002/adma.202202240
摘要
Abstract The electrochemical nitrogen reduction reaction (e‐NRR) is envisaged as alternative technique to the Haber–Bosch process for NH 3 synthesis. However, how to develop highly active e‐NRR catalysts faces daunting challenges. Herein, a viable strategy to manipulate local spin state of isolated iron sites through S‐coordinated doping (Fe SA ‐NSC) is reported. Incorporation of S in the coordination of Fe SA ‐NSC can induce the transition of spin‐polarization configuration with the formation of a medium‐spin‐state of Fe (t 2g 6 e g 1), which is beneficial for facilitating e g electrons to penetrate the antibonding π‐orbital of nitrogen. As a consequence, a record‐high current density up to 10 mA cm −2 can be achieved, together with a high NH 3 selectivity of ≈10% in a flow cell reactor. Both experimental and theoretical analyses indicate that the monovalent Fe(I) atomic center in the Fe SA ‐NSC after the S doping accelerates the N 2 activation and protonation in the rate‐determining step of *N 2 to *NNH.
科研通智能强力驱动
Strongly Powered by AbleSci AI