An Adaptive Hierarchical Energy Management Strategy for Hybrid Electric Vehicles Combining Heuristic Domain Knowledge and Data-Driven Deep Reinforcement Learning

计算机科学 强化学习 水准点(测量) 控制器(灌溉) PID控制器 人工智能 能源消耗 能源管理 启发式 控制工程 能量(信号处理) 工程类 统计 电气工程 生物 数学 大地测量学 地理 温度控制 农学
作者
Bo Hu,Jiaxi Li
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (3): 3275-3288 被引量:17
标识
DOI:10.1109/tte.2021.3132773
摘要

With the development of artificial intelligence, there has been a growing interest in machine learning-based control strategy, among which reinforcement learning (RL) has opened up a new direction in the field of hybrid electric vehicle (HEV) energy management. However, the issues of the current RL setting ranging from inappropriate battery state-of-charge (SOC) constraint to ineffective and risky exploration make it inapplicable to many industrial energy management strategy (EMS) tasks. To address this, an adaptive hierarchical EMS combining heuristic equivalent consumption minimization strategy (ECMS) knowledge and deep deterministic policy gradient (DDPG), which is a state-of-the-art data-driven RL algorithm, is proposed in this work. For comparison purposes, the proposed strategy is contrasted with dynamic programming (DP), proportion integration differentiation (PID)-based adaptive ECMS, and rule-based and standard RL-based counterparts, and the results show that the fuel consumption after SOC correction for the proposed strategy is very close to that of the DP-based control and lower than that of the other three benchmark strategies. Considering that the proposed strategy can make better use of the RL techniques while realizing an effective, efficient, and safe exploration in a data-driven manner, it may become a strong foothold for future RL-based EMS to build on, especially when the controller has to be trained directly and from scratch in a real-world environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助慧慧采纳,获得30
刚刚
1秒前
小蘑菇应助小白小白鼠采纳,获得10
1秒前
2秒前
gzsy完成签到,获得积分10
2秒前
蔡夜安完成签到 ,获得积分10
3秒前
3秒前
6秒前
科研通AI2S应助英勇的鼠标采纳,获得10
6秒前
Demon完成签到,获得积分10
6秒前
慧慧给慧慧的求助进行了留言
6秒前
Lengbo发布了新的文献求助10
7秒前
7秒前
赘婿应助南溪采纳,获得10
7秒前
田様应助宝宝采纳,获得10
8秒前
9秒前
9秒前
Hello应助JasonSun采纳,获得10
10秒前
莎莎完成签到 ,获得积分10
11秒前
LL来了发布了新的文献求助10
11秒前
木南楠a完成签到,获得积分10
11秒前
包包大人完成签到 ,获得积分10
12秒前
林声发布了新的文献求助20
12秒前
13秒前
Lengbo完成签到,获得积分10
13秒前
花有花期完成签到,获得积分10
14秒前
Cactus发布了新的文献求助10
14秒前
15秒前
田様应助11采纳,获得10
15秒前
Debrolie完成签到 ,获得积分10
15秒前
火星上小土豆完成签到 ,获得积分10
16秒前
16秒前
自然的书萱完成签到,获得积分10
17秒前
华哥完成签到,获得积分10
17秒前
学术渣渣完成签到,获得积分10
17秒前
17秒前
9577完成签到,获得积分10
18秒前
zhang发布了新的文献求助10
18秒前
Christine发布了新的文献求助30
19秒前
19秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975