Maximum margin Riemannian manifold-based hyperdisk for fault diagnosis of roller bearing with multi-channel fusion covariance matrix

协方差矩阵 方位(导航) 模式识别(心理学) 黎曼流形 数学 断层(地质) 人工智能 算法 计算机科学 数学分析 地质学 地震学
作者
Xin Li,Yang Yu,Niaoqing Hu,Zhe Cheng,Haidong Shao,Junsheng Cheng
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:51: 101513-101513 被引量:24
标识
DOI:10.1016/j.aei.2021.101513
摘要

For rotating machinery, the sudden failure of roller bearing would lead to the downtime of the whole system and even catastrophic accidents. Therefore, multiple accelerometers are usually arranged to comprehensively evaluate the health of roller bearing, enhancing the stability and reliability of monitoring results. This paper proposes a novel fault diagnosis framework by utilizing a multi-channel fusion covariance matrix (MFCM) and Riemannian manifold-based hyperdisk. First, 22 statistical features are acquired from each channel data. Then, MFCM is calculated as the fault feature representation of roller bearing to achieve multi-channel feature fusion, where the element of MFCM represents the correlation information between different channels. Finally, since MFCM is a symmetric positive definite (SPD) matrix, lying on a Riemannian manifold, we design a maximum margin Riemannian manifold-based hyperdisk (MMRMHD) classifier to conduct fault classification, where Log-Euclidean metric (LEM) is introduced to calibrate the distribution of MFCMs. Moreover, to further improve the classification ability of nonlinear SPD data, we map MFCMs into a high-dimensional Hilbert space with the LEM-based kernel function and construct a novel kernelized MMRMHD model. The experimental results on two bearing datasets with multi-channel vibration signals demonstrate the effectiveness and superiority of the proposed fault diagnosis framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助ebangdeng采纳,获得10
1秒前
G秋发布了新的文献求助10
1秒前
今后应助机智的皮皮虾采纳,获得10
1秒前
元谷雪发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
casting发布了新的文献求助10
3秒前
碎月发布了新的文献求助10
4秒前
彭于晏应助鲜艳的熊猫采纳,获得10
4秒前
充电宝应助拼搏遥采纳,获得10
5秒前
辛苦打工人完成签到,获得积分10
5秒前
lyj334完成签到,获得积分10
6秒前
7秒前
宗道之发布了新的文献求助10
7秒前
ym完成签到,获得积分10
7秒前
9秒前
11秒前
科研通AI2S应助badmf采纳,获得10
11秒前
yangching应助张志伟采纳,获得10
12秒前
12秒前
13秒前
yunnguw发布了新的文献求助10
13秒前
不安雅琴完成签到,获得积分20
14秒前
ym发布了新的文献求助10
16秒前
11234完成签到 ,获得积分10
16秒前
兔兔不吐泡泡完成签到,获得积分10
16秒前
wangjing应助宁万三采纳,获得10
18秒前
不安雅琴发布了新的文献求助10
18秒前
yunnguw完成签到,获得积分20
18秒前
19秒前
缓慢手机发布了新的文献求助30
19秒前
19秒前
19秒前
少言完成签到,获得积分10
20秒前
20秒前
21秒前
少言发布了新的文献求助10
22秒前
搜集达人应助vetww采纳,获得10
23秒前
斑比发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163545
求助须知:如何正确求助?哪些是违规求助? 2814475
关于积分的说明 7904861
捐赠科研通 2474004
什么是DOI,文献DOI怎么找? 1317208
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602188