超亲水性
材料科学
润湿
石墨烯
接触角
制作
纳米技术
表征(材料科学)
化学工程
表面改性
复合材料
医学
工程类
病理
替代医学
作者
Yilun Li,Duy Xuan Luong,Jibo Zhang,Yash R. Tarkunde,Carter Kittrell,Franklin Sargunaraj,Yongsung Ji,Christopher J. Arnusch,James M. Tour
标识
DOI:10.1002/adma.201700496
摘要
The modification of graphene-based materials is an important topic in the field of materials research. This study aims to expand the range of properties for laser-induced graphene (LIG), specifically to tune the hydrophobicity and hydrophilicity of the LIG surfaces. While LIG is normally prepared in the air, here, using selected gas atmospheres, a large change in the water contact angle on the as-prepared LIG surfaces has been observed, from 0° (superhydrophilic) when using O2 or air, to >150° (superhydrophobic) when using Ar or H2 . Characterization of the newly derived surfaces shows that the different wetting properties are due to the surface morphology and chemical composition of the LIG. Applications of the superhydrophobic LIG are shown in oil/water separation as well as anti-icing surfaces, while the versatility of the controlled atmosphere chamber fabrication method is demonstrated through the improved microsupercapacitor performance generated from LIG films prepared in an O2 atmosphere.
科研通智能强力驱动
Strongly Powered by AbleSci AI