Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength

晶片切割 薄脆饼 材料科学 激光器 沟槽 光电子学 超短脉冲 光学 复合材料 物理 图层(电子)
作者
Matthias Domke,Bernadette Egle,Giovanni Piredda,Sandra Stroj,G. Fasching,Marius Bodea,Elisabeth Schwarz
出处
期刊:Journal of Micromechanics and Microengineering [IOP Publishing]
卷期号:26 (11): 115004-115004 被引量:16
标识
DOI:10.1088/0960-1317/26/11/115004
摘要

High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20–30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about 700 MPa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多吃香菜完成签到,获得积分10
刚刚
luoyutian发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
蔡蔡不菜菜完成签到,获得积分10
1秒前
1秒前
地表飞猪完成签到,获得积分0
2秒前
2秒前
柒辞完成签到,获得积分10
2秒前
KONG完成签到,获得积分10
2秒前
2秒前
光电效应完成签到,获得积分10
2秒前
4秒前
疯狂论文完成签到,获得积分10
5秒前
哈哈完成签到,获得积分10
6秒前
6秒前
ddddansu完成签到,获得积分20
6秒前
凌氏冯雯发布了新的文献求助10
7秒前
85完成签到,获得积分10
7秒前
Yzz完成签到,获得积分10
7秒前
木木发布了新的文献求助10
7秒前
一拳一个小欧阳完成签到 ,获得积分10
7秒前
程smile笑发布了新的文献求助10
7秒前
wyx1111发布了新的文献求助10
9秒前
雨落瑾年完成签到,获得积分10
9秒前
香蕉觅云应助felix采纳,获得10
9秒前
淡定草丛完成签到 ,获得积分10
10秒前
dameinv完成签到 ,获得积分10
10秒前
10秒前
xiuxiu完成签到,获得积分10
11秒前
WEILAI完成签到,获得积分10
11秒前
个性德天完成签到,获得积分10
11秒前
卷王完成签到,获得积分10
12秒前
李小二完成签到,获得积分10
13秒前
可爱的函函应助高兴的羊采纳,获得10
13秒前
13秒前
洁净的钢笔给洁净的钢笔的求助进行了留言
14秒前
木木完成签到,获得积分10
15秒前
suan完成签到,获得积分10
15秒前
baby完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874