Applicability of cutting fluids with nanoparticle inclusion as coolants in machining

冷却液 纳米流体 机械加工 润滑 传热 材料科学 切削液 机械工程 传热系数 纳米颗粒 包裹体(矿物) 机械 复合材料 热力学 冶金 工程类 纳米技术 物理
作者
R. R. Srikant,D. N. Rao,M. Subrahmanyam,Vamsi P Krishna
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [SAGE]
卷期号:223 (2): 221-225 被引量:82
标识
DOI:10.1243/13506501jet463
摘要

Heat liberated and the friction associated with the cutting process ever pose a problem in terms of tool life. Cutting fluids have been the conventional choice to address the problem. However, environmental hazards posed by the fluids have limited their usage, giving rise to minimum quantity lubrication. Nevertheless, its capability to carry away the heat and provide adequate lubrication is limited. In view of the above problems, nanofluids have gained prominence. Nanofluids, with their cooling and lubricating properties, have emerged as a promising solution. This article deals with characterizing changes in the heat transfer capacities of nanofluids with the inclusion of nanoparticles in the cutting fluids. To estimate the prevalent temperatures in machining, a facing operation is carried out under constant cutting conditions in a dry state and using conventional cutting fluid as coolant. Heat transfer coefficients are estimated using the analogy for flow over flat plates in all lubricating conditions. The temperatures calculated using the estimated heat transfer coefficient for conventional cutting fluid are compared with the experimental observations to validate the methodology. Temperature profiles are simulated using ANSYS 5.4 to infer on the suitability of the coolants in enhancing machining performance. Nanoparticle inclusion is found to be beneficial in improving the coolant properties. Nevertheless, the high cost of nanoparticles may appear to be prohibitive and hence minimum requirement of inclusion is estimated.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷的芷容完成签到 ,获得积分10
刚刚
1秒前
VioletRyu发布了新的文献求助50
2秒前
雨天完成签到,获得积分10
2秒前
CodeCraft应助友小猫采纳,获得10
4秒前
4秒前
hushan53发布了新的文献求助10
5秒前
7秒前
tomorrow完成签到 ,获得积分10
9秒前
9秒前
发文章12138完成签到,获得积分10
9秒前
10秒前
13秒前
zgl发布了新的文献求助10
15秒前
慕青应助不如吃茶去采纳,获得10
15秒前
科研通AI6.1应助超级大神采纳,获得10
16秒前
future完成签到 ,获得积分10
16秒前
陈阳完成签到,获得积分10
16秒前
彬彬完成签到 ,获得积分10
16秒前
17秒前
hhh完成签到 ,获得积分10
17秒前
一二发布了新的文献求助10
18秒前
Findasheep发布了新的文献求助10
18秒前
溜溜很优秀完成签到,获得积分10
19秒前
李爱国应助小白采纳,获得10
19秒前
20秒前
tht2233发布了新的文献求助10
21秒前
情怀应助laz采纳,获得10
21秒前
22秒前
24秒前
25秒前
30秒前
TYM发布了新的文献求助10
30秒前
30秒前
zwy109完成签到 ,获得积分10
31秒前
zgl完成签到,获得积分10
31秒前
32秒前
科研通AI6.1应助一二采纳,获得10
33秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831