烧结
材料科学
微观结构
晶粒生长
粒度
晶界
收缩率
晶界扩散系数
粒度分布
晶界强化
冶金
粒径
复合材料
化学工程
工程类
标识
DOI:10.1080/10408436.2010.525197
摘要
Sintering occurs when packed particles are heated to a temperature where there is sufficient atomic motion to grow bonds between the particles. The conditions that induce sintering depend on the material, its melting temperature, particle size, and a host of processing variables. It is common for sintering to produce a dimensional change, typically shrinkage, where the powder compact densifies, leading to significant strengthening. Microstructure coarsening is inherent to sintering, most evident as grain growth, but it is common for pore growth to occur as density increases. During coarsening, the grain structure converges to a self-similar character seen in both the grain shape distribution and grain size distribution. Coarsening behavior during sintering conforms to classic grain growth kinetics, modified to reflect the evolving microstructure. These modifications involve the grain boundary coverage due to pores, liquid films, or second phases and the altered grain boundary mobility due to these phases. The mass transport rates associated with each of these interfaces are different, with different temperature and composition dependencies. Hence, the coarsening rate during sintering is not constant, but changes with the evolving microstructure. Core aspects treated in this review include models for coarsening, grain shape, grain size distribution, and how pores, liquids, dispersoids, and other phases determine microstructure coarsening during sintering.
科研通智能强力驱动
Strongly Powered by AbleSci AI