Performance of state space and ARIMA models for consumer retail sales forecasting

自回归积分移动平均 采购 样品(材料) 销售预测 阿卡克信息准则 零售额 需求预测 平均绝对百分比误差 计量经济学 计算机科学 状态空间 博克斯-詹金斯 运筹学 时间序列 营销 均方误差 统计 经济 业务 数学 机器学习 化学 色谱法
作者
Patrícia Ramos,Nicolau Santos,Rui Rebelo
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:34: 151-163 被引量:183
标识
DOI:10.1016/j.rcim.2014.12.015
摘要

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳风暴剑完成签到,获得积分10
1秒前
October关注了科研通微信公众号
1秒前
Tiam完成签到 ,获得积分10
1秒前
luckype完成签到,获得积分10
2秒前
3秒前
xiangpimei完成签到 ,获得积分10
3秒前
4秒前
拿铁小笼包完成签到,获得积分10
4秒前
ZeroL完成签到 ,获得积分10
4秒前
actor2006完成签到,获得积分10
4秒前
调皮的绿真完成签到,获得积分20
5秒前
SPLjoker完成签到,获得积分10
6秒前
那么我赢了完成签到 ,获得积分10
6秒前
牵猫散步的鱼完成签到,获得积分10
6秒前
blUe完成签到,获得积分10
6秒前
闻歌发布了新的文献求助10
7秒前
圣尊鳕幽完成签到,获得积分10
8秒前
Estrella应助Ye采纳,获得10
8秒前
9秒前
QXS完成签到 ,获得积分10
9秒前
糜厉完成签到,获得积分10
11秒前
搜集达人应助闻歌采纳,获得10
12秒前
红鲤完成签到,获得积分10
13秒前
iNk应助英俊的沛容采纳,获得20
13秒前
xxxksk发布了新的文献求助10
13秒前
ww完成签到,获得积分10
13秒前
三号技师完成签到,获得积分10
14秒前
Orange应助TTT0530采纳,获得10
14秒前
星辰大海应助小娜娜采纳,获得10
16秒前
丹青发布了新的文献求助100
16秒前
shirley完成签到,获得积分10
16秒前
ZHOUJING完成签到,获得积分20
18秒前
无为完成签到 ,获得积分10
19秒前
wzc完成签到,获得积分20
19秒前
谢陈完成签到 ,获得积分10
20秒前
香蕉觅云应助司马惜儿采纳,获得10
20秒前
畅快访蕊完成签到,获得积分10
21秒前
23秒前
a龙完成签到,获得积分10
23秒前
共享精神应助漂亮的素采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139867
求助须知:如何正确求助?哪些是违规求助? 2790746
关于积分的说明 7796497
捐赠科研通 2447159
什么是DOI,文献DOI怎么找? 1301623
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601185