An automated learning model for sentiment analysis and data classification of Twitter data using balanced CA-SVM

情绪分析 支持向量机 计算机科学 词汇分析 人工智能 社会化媒体 聚类分析 集合(抽象数据类型) 数据集 机器学习 微博 人工神经网络 数据挖掘 自然语言处理 万维网 程序设计语言
作者
C. Pretty Diana Cyril,J. Rene Beulah,S. Neelakandan,M. Prakash,A. Harshavardhan,D. Sivabalaselvamani
出处
期刊:Concurrent Engineering [SAGE]
卷期号:29 (4): 386-395 被引量:79
标识
DOI:10.1177/1063293x211031485
摘要

The modern society runs over the social media for their most time of every day. The web users spend their most time in social media and they share many details with their friends. Such information obtained from their chat has been used in several applications. The sentiment analysis is the one which has been applied with Twitter data set toward identifying the emotion of any user and based on those different problems can be solved. Primarily, the data as of the Twitter database is preprocessed. In this step, tokenization, stemming, stop word removal, and number removal are done. The proposed automated learning with CA-SVM based sentiment analysis model reads the Twitter data set. After that they have been processed to extract the features which yield set of terms. Using the terms, the tweets are clustered using TGS-K means clustering which measures Euclidean distance according to different features like semantic sentiment score (SSS), gazetteer and symbolic sentiment support (GSSS), and topical sentiment score (TSS). Further, the method classifies the tweets according to support vector machine (CA-SVM) which classifies the tweet according to the support value which is measured based on the above two measures. The attained results are validated utilizing k-fold cross-validation methodology. Then, the classification is performed by utilizing the Balanced CA-SVM (Deep Learning Modified Neural Network). The results are evaluated and compared with the existing works. The Proposed model achieved 92.48 % accuracy and 92.05% sentiment score contrasted with the existing works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助我有魔鬼大头采纳,获得10
1秒前
1秒前
z.发布了新的文献求助10
1秒前
3秒前
毛儿豆儿完成签到,获得积分10
3秒前
张小星发布了新的文献求助10
3秒前
4秒前
传奇3应助Hoshi采纳,获得10
5秒前
吴嘉俊发布了新的文献求助10
5秒前
雯雯稳稳的完成签到,获得积分20
5秒前
啾啾发布了新的文献求助10
5秒前
Luoling完成签到 ,获得积分10
6秒前
阿达应助May采纳,获得10
6秒前
无奈初雪完成签到,获得积分10
7秒前
Heisenberg应助只因太美采纳,获得10
7秒前
7秒前
生动的青烟完成签到,获得积分10
7秒前
丰富的宛亦完成签到 ,获得积分10
8秒前
8秒前
乐呵乐呵完成签到,获得积分10
8秒前
9秒前
9秒前
wsx完成签到,获得积分10
10秒前
小蘑菇应助想游泳的鹰采纳,获得10
11秒前
11秒前
英姑应助张小星采纳,获得10
12秒前
情怀应助zy采纳,获得10
12秒前
z.完成签到,获得积分10
12秒前
乐乐酱发布了新的文献求助10
12秒前
Suky完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
深情安青应助激昂的中心采纳,获得10
13秒前
14秒前
Akim应助zxy采纳,获得10
14秒前
14秒前
帆儿发布了新的文献求助10
14秒前
亚米发布了新的文献求助20
14秒前
13656479046发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313209
求助须知:如何正确求助?哪些是违规求助? 2945574
关于积分的说明 8526168
捐赠科研通 2621359
什么是DOI,文献DOI怎么找? 1433478
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512