Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation

卷积(计算机科学) 卷积神经网络 一般化 计算机科学 可分离空间 点(几何) 人工智能 模式识别(心理学) 样品(材料) 人工神经网络 数学 几何学 色谱法 数学分析 化学
作者
Lei Li,Gang Qiao,Songzuo Liu,Qing Xin,Huaying Zhang,Suleman Mazhar,Fuqiang Niu
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:150 (5): 3861-3873 被引量:10
标识
DOI:10.1121/10.0007291
摘要

Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术学习发布了新的文献求助10
刚刚
刚刚
Cyrus发布了新的文献求助10
刚刚
陶醉觅夏发布了新的文献求助10
1秒前
1秒前
chenchen发布了新的文献求助10
2秒前
潇洒雁梅发布了新的文献求助10
2秒前
研友_VZG7GZ应助lolo采纳,获得10
2秒前
saikema发布了新的文献求助10
3秒前
3秒前
小二郎应助光亮元枫采纳,获得10
4秒前
5秒前
余额12138发布了新的文献求助10
5秒前
冷静硬币发布了新的文献求助10
6秒前
tree完成签到,获得积分10
6秒前
bkagyin应助呼啦呼啦圈采纳,获得10
7秒前
科研女郎完成签到 ,获得积分10
8秒前
8秒前
9秒前
qp完成签到,获得积分10
9秒前
李爱国应助SmuA采纳,获得10
11秒前
12秒前
余额12138完成签到,获得积分10
12秒前
星辰大海应助冷静硬币采纳,获得10
12秒前
13秒前
fillippo99应助xk采纳,获得20
13秒前
呆萌又柔应助科研通管家采纳,获得30
13秒前
Hello应助科研通管家采纳,获得30
13秒前
13秒前
在水一方应助coco采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
险胜应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
mhl11应助科研通管家采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
zys2001mezy应助科研通管家采纳,获得30
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585