An intelligent method of roller bearing fault diagnosis and fault characteristic frequency visualization based on improved MobileNet V3

计算机科学 瓶颈 卷积神经网络 点式的 断层(地质) 计算 人工神经网络 算法 深度学习 卷积(计算机科学) 计算复杂性理论 特征提取 故障检测与隔离 人工智能 模式识别(心理学) 数学 数学分析 地震学 执行机构 嵌入式系统 地质学
作者
Dechen Yao,Guanyi Li,Hengchang Liu,Jianwei Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (12): 124009-124009 被引量:18
标识
DOI:10.1088/1361-6501/ac27ea
摘要

In recent years, the lightweight neural network models have been gradually applied to fault diagnosis. In order to solve the problems about computation bottleneck of the pointwise convolution module which is widely used in lightweight networks, and explore how to effectively evaluate the quality of extracted features as well as deeply merge traditional fault diagnosis methods into deep learning, this paper proposed a diagnosis model named butterfly-transform (BFT)-MobileNet V3. BFT-MobileNet V3 was based on MobileNet V3, and consisted of BFT module and a novel algorithm called Deep-SHAP. This model not only had the advantages of low time complexity and high accuracy compared with the original network, but also had a novel feature that was able to automatically figure out the fault characteristic frequency and visualize the quality of extracted features. The experimental results showed that the time complexity of the BFT-MobileNet V3 model proposed in this paper decreases from to while keeping a high accuracy rate. With the same time complexity, BFT-MobileNet V3 also had a higher accuracy rate than other networks. Meanwhile, with the Deep SHAP algorithm, the proposed model can accurately calculate the fault feature frequency of the roller bearings as well as intuitively visualize the quality of extracted features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
及禾应助rh1006采纳,获得10
刚刚
刚刚
jesi完成签到,获得积分10
1秒前
无花果应助韵寒禾香采纳,获得10
2秒前
zy完成签到,获得积分10
2秒前
3秒前
xfyxxh完成签到,获得积分10
3秒前
水清木华完成签到,获得积分10
4秒前
小妮子发布了新的文献求助10
5秒前
Xiaoxiao应助春天先生采纳,获得10
6秒前
7秒前
笨笨山芙发布了新的文献求助10
9秒前
ll应助wmq采纳,获得10
9秒前
渊思发布了新的文献求助10
11秒前
小虎应助方俊驰采纳,获得10
12秒前
daisy发布了新的文献求助10
12秒前
风清扬发布了新的文献求助10
12秒前
13秒前
14秒前
fang完成签到,获得积分10
15秒前
深情安青应助顺利狗采纳,获得10
17秒前
lee完成签到,获得积分10
18秒前
忧郁凌波发布了新的文献求助10
19秒前
19秒前
zy发布了新的文献求助10
19秒前
害羞的黄蜂关注了科研通微信公众号
25秒前
白兰鸽完成签到,获得积分10
26秒前
26秒前
28秒前
28秒前
28秒前
今后应助外向的飞雪采纳,获得10
29秒前
科研通AI5应助阳光香水采纳,获得10
31秒前
二三发布了新的文献求助10
32秒前
WoeL.Aug.11完成签到 ,获得积分10
32秒前
顺利狗发布了新的文献求助10
32秒前
春天先生关注了科研通微信公众号
33秒前
33秒前
anzhi完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343