An intelligent method of roller bearing fault diagnosis and fault characteristic frequency visualization based on improved MobileNet V3

计算机科学 瓶颈 卷积神经网络 点式的 断层(地质) 计算 人工神经网络 算法 深度学习 卷积(计算机科学) 计算复杂性理论 特征提取 故障检测与隔离 人工智能 模式识别(心理学) 数学 执行机构 地震学 嵌入式系统 数学分析 地质学
作者
Dechen Yao,Guanyi Li,Hengchang Liu,Jianwei Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (12): 124009-124009 被引量:18
标识
DOI:10.1088/1361-6501/ac27ea
摘要

In recent years, the lightweight neural network models have been gradually applied to fault diagnosis. In order to solve the problems about computation bottleneck of the pointwise convolution module which is widely used in lightweight networks, and explore how to effectively evaluate the quality of extracted features as well as deeply merge traditional fault diagnosis methods into deep learning, this paper proposed a diagnosis model named butterfly-transform (BFT)-MobileNet V3. BFT-MobileNet V3 was based on MobileNet V3, and consisted of BFT module and a novel algorithm called Deep-SHAP. This model not only had the advantages of low time complexity and high accuracy compared with the original network, but also had a novel feature that was able to automatically figure out the fault characteristic frequency and visualize the quality of extracted features. The experimental results showed that the time complexity of the BFT-MobileNet V3 model proposed in this paper decreases from to while keeping a high accuracy rate. With the same time complexity, BFT-MobileNet V3 also had a higher accuracy rate than other networks. Meanwhile, with the Deep SHAP algorithm, the proposed model can accurately calculate the fault feature frequency of the roller bearings as well as intuitively visualize the quality of extracted features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助sylus采纳,获得10
刚刚
xr123456发布了新的文献求助10
刚刚
思絮完成签到 ,获得积分10
2秒前
自由冬亦完成签到,获得积分10
2秒前
嘿嘿发布了新的文献求助10
3秒前
安静的鸽子完成签到,获得积分10
4秒前
疯狂的曲奇完成签到,获得积分10
5秒前
5秒前
PhD_HanWu完成签到,获得积分10
6秒前
10秒前
薛而不思则罔完成签到 ,获得积分10
10秒前
等待从阳发布了新的文献求助30
10秒前
弹剑作歌完成签到,获得积分10
13秒前
15秒前
英姑应助Dr.c采纳,获得10
15秒前
慕青应助水中捞月采纳,获得10
16秒前
小琪发布了新的文献求助10
16秒前
yyanxuemin919发布了新的文献求助10
17秒前
20秒前
fy2001发布了新的文献求助30
22秒前
hhh555完成签到,获得积分10
22秒前
23秒前
小马甲应助zkeeee采纳,获得10
23秒前
酷炫灰狼发布了新的文献求助10
24秒前
xr123456完成签到,获得积分10
25秒前
范fan发布了新的文献求助10
25秒前
26秒前
沉默红牛完成签到,获得积分20
27秒前
28秒前
29秒前
沉默红牛发布了新的文献求助10
29秒前
Akim应助嘿嘿采纳,获得10
30秒前
wang发布了新的文献求助80
30秒前
30秒前
科研小白发布了新的文献求助10
31秒前
31秒前
liuyu0209发布了新的文献求助10
32秒前
Dr.c发布了新的文献求助10
35秒前
小迷糊完成签到 ,获得积分10
35秒前
小二郎应助奋斗的飞柏采纳,获得30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432