稳健性(进化)
计算机科学
度量(数据仓库)
欧几里得空间
拓扑排序
理论计算机科学
矢量化(数学)
聚类分析
人工智能
算法
数学
数据挖掘
有向图
并行计算
生物化学
化学
纯数学
基因
作者
Martin Royer,Frédéric Chazal,Clément Levrard,Yuhei Umeda,Yuichi Ike
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2021-04-13
被引量:5
摘要
Robust topological information commonly comes in the form of a set of persistence diagrams, finite measures that are in nature uneasy to affix to generic machine learning frameworks. We introduce a fast, learnt, unsupervised vectorization method for measures in Euclidean spaces and use it for reflecting underlying changes in topological behaviour in machine learning contexts. The algorithm is simple and efficiently discriminates important space regions where meaningful differences to the mean measure arise. It is proven to be able to separate clusters of persistence diagrams. We showcase the strength and robustness of our approach on a number of applications, from emulous and modern graph collections where the method reaches state-of-the-art performance to a geometric synthetic dynamical orbits problem. The proposed methodology comes with a single high level tuning parameter: the total measure encoding budget. We provide a completely open access software.
科研通智能强力驱动
Strongly Powered by AbleSci AI