Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models

单变量 光伏系统 计算机科学 多元统计 生产(经济) 消费(社会学) 发电 基线(sea) 人工智能 功率(物理) 功率消耗 发电站 机器学习 环境经济学 计量经济学 工程类 经济 宏观经济学 社会学 地质学 物理 电气工程 海洋学 量子力学 社会科学
作者
Ali Agga,Ahmed Abbou,Moussa Labbadi,Yassine El Houm
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:177: 101-112 被引量:195
标识
DOI:10.1016/j.renene.2021.05.095
摘要

Global electricity consumption has raised in the last century due to many reasons such as the increase in human population and technological development. To keep up with this increasing trend, the use of fossil resources has increased. But these resources are not environmentally friendly, and for this reason, many countries and governments are encouraging the use of green sources. Among these sources, PV technology is widely promoted and used due to its improved efficiency and lower prices for photovoltaic panels. Therefore, the importance of forecasting power production for these plants is necessary. In this work, two hybrid models were proposed (CNN-LSTM and ConvLSTM) to effectively predict the power production of a self-consumption PV plant. To confirm the efficiency of the proposed models, the LSTM model was used as a baseline for comparison. The three models were trained on two datasets, a univariate dataset containing only the power output of the previous days, while the multivariate dataset contains more features (weather features) that affect the production of the PV plant. The time frames for the forecast ranged from one day to one week ahead of time. The results show that the proposed methods are more accurate than a normal LSTM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vwegvwdecaf发布了新的文献求助10
刚刚
1秒前
2秒前
cn完成签到 ,获得积分10
2秒前
xiaoyuzi发布了新的文献求助10
3秒前
慕青应助Wxj246801采纳,获得10
3秒前
害羞外套发布了新的文献求助10
3秒前
KYRIE完成签到,获得积分10
4秒前
冷静尔芙完成签到,获得积分20
4秒前
大个应助JIE采纳,获得10
4秒前
陈飞鹏完成签到,获得积分10
4秒前
Ivan应助vwegvwdecaf采纳,获得10
4秒前
wuwu发布了新的文献求助10
5秒前
Polaris完成签到,获得积分10
6秒前
鱼湘完成签到,获得积分10
7秒前
xn201120发布了新的文献求助30
8秒前
9秒前
王某发布了新的文献求助10
9秒前
leiao完成签到 ,获得积分10
9秒前
10秒前
赘婿应助无敌de哈基米采纳,获得10
10秒前
10秒前
11秒前
东耦完成签到,获得积分10
11秒前
安详昊强发布了新的文献求助10
14秒前
所所应助sam采纳,获得10
14秒前
Wxj246801发布了新的文献求助10
15秒前
JamesPei应助务实的孤丹采纳,获得10
16秒前
drsquall发布了新的文献求助10
17秒前
思源应助zhaoyali采纳,获得10
18秒前
18秒前
19秒前
大个应助79采纳,获得10
19秒前
Akim应助安详昊强采纳,获得10
19秒前
20秒前
20秒前
心空发布了新的文献求助10
21秒前
科研通AI6应助扶苏采纳,获得10
22秒前
清脆的初蝶完成签到 ,获得积分10
22秒前
无尘泪完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4534794
求助须知:如何正确求助?哪些是违规求助? 3970977
关于积分的说明 12302673
捐赠科研通 3637655
什么是DOI,文献DOI怎么找? 2002625
邀请新用户注册赠送积分活动 1038281
科研通“疑难数据库(出版商)”最低求助积分说明 927706