计算机科学
下游(制造业)
推论
计算生物学
注释
聚类分析
数据挖掘
数据科学
生物
RNA序列
人工智能
转录组
基因
工程类
基因表达
生物化学
运营管理
作者
Zilong Zhang,Feifei Cui,Chen Lin,Lingling Zhao,Chuyu Wang,Quan Zou
摘要
Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.
科研通智能强力驱动
Strongly Powered by AbleSci AI