Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences

计算机科学 算法 推论 计算智能 人工智能 最优化问题 机器学习 遗传算法 领域(数学) 数学 纯数学
作者
Ayesha Sohail
出处
期刊:Annals of Data Science [Springer Nature]
卷期号:10 (4): 1007-1018 被引量:12
标识
DOI:10.1007/s40745-021-00354-9
摘要

In the fields of engineering and data sciences, the optimization problems arise on regular basis. With the progress in the field of scientific computing and research, the optimization is not a problem for small data sets and lower dimensional problems. The problem arise, when the data is large, stochastic in nature, and/or multidimensional. The basic optimization tools fail for such problems due to the complexity. The genetic algorithms, based on the natural selection hypothesis, play an imperative role to deal with such complex problems. Genetic algorithms are used in the literature to optimize numerous problems. In the field of computational biology, these algorithms have provided cost effective solutions to find optimal values for large data sets. The genetic algorithms have been used for image reconstruction. These algorithms are based on sub-algorithms to improve the accuracy and precision. We will discuss the advanced genetic algorithms and their applications in detail. Genetic algorithm, in hybrid form have attracted interest of researchers from almost all fields, including computer science, applied mathematics, engineering and computational biology. These tools help to analyze the systems in a swift manner. This important feature is discussed with the aid of examples. The time series forecasting and the Bayesian inference, in combination with the genetic algorithms, can prove to be powerful artificial intelligence tools. We will discuss this important aspect in detail with the aid of some examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aria应助科研通管家采纳,获得10
刚刚
烟花应助nemohuang采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
南方完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助Nan采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
FashionBoy应助米大王采纳,获得10
1秒前
娄某给娄某的求助进行了留言
1秒前
眯眯眼的太阳完成签到 ,获得积分10
1秒前
朴实雨柏关注了科研通微信公众号
1秒前
允怡完成签到,获得积分10
2秒前
整齐芷文发布了新的文献求助10
2秒前
2秒前
888关闭了888文献求助
2秒前
科研狼完成签到,获得积分10
2秒前
CyberHamster完成签到,获得积分0
3秒前
无极微光应助殿祥G采纳,获得20
3秒前
曲奇发布了新的文献求助10
3秒前
3秒前
文艺的鲜花完成签到 ,获得积分10
3秒前
3秒前
体贴乐巧发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645776
求助须知:如何正确求助?哪些是违规求助? 4769743
关于积分的说明 15032036
捐赠科研通 4804514
什么是DOI,文献DOI怎么找? 2569056
邀请新用户注册赠送积分活动 1526123
关于科研通互助平台的介绍 1485700