Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences

计算机科学 算法 推论 计算智能 人工智能 最优化问题 机器学习 遗传算法 领域(数学) 数学 纯数学
作者
Ayesha Sohail
出处
期刊:Annals of Data Science [Springer Nature]
卷期号:10 (4): 1007-1018 被引量:12
标识
DOI:10.1007/s40745-021-00354-9
摘要

In the fields of engineering and data sciences, the optimization problems arise on regular basis. With the progress in the field of scientific computing and research, the optimization is not a problem for small data sets and lower dimensional problems. The problem arise, when the data is large, stochastic in nature, and/or multidimensional. The basic optimization tools fail for such problems due to the complexity. The genetic algorithms, based on the natural selection hypothesis, play an imperative role to deal with such complex problems. Genetic algorithms are used in the literature to optimize numerous problems. In the field of computational biology, these algorithms have provided cost effective solutions to find optimal values for large data sets. The genetic algorithms have been used for image reconstruction. These algorithms are based on sub-algorithms to improve the accuracy and precision. We will discuss the advanced genetic algorithms and their applications in detail. Genetic algorithm, in hybrid form have attracted interest of researchers from almost all fields, including computer science, applied mathematics, engineering and computational biology. These tools help to analyze the systems in a swift manner. This important feature is discussed with the aid of examples. The time series forecasting and the Bayesian inference, in combination with the genetic algorithms, can prove to be powerful artificial intelligence tools. We will discuss this important aspect in detail with the aid of some examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
李婉婷完成签到 ,获得积分10
2秒前
2秒前
3秒前
怡然的城发布了新的文献求助10
3秒前
4秒前
Rambo完成签到,获得积分10
5秒前
洪对对发布了新的文献求助10
5秒前
大模型应助爱吃米线采纳,获得10
6秒前
htttt完成签到,获得积分10
7秒前
8秒前
8秒前
慕青应助现实的白开水采纳,获得10
9秒前
脑洞疼应助eurus采纳,获得10
9秒前
卜青发布了新的文献求助50
9秒前
量子星尘发布了新的文献求助10
9秒前
Aseaxin完成签到 ,获得积分10
10秒前
王宝连发布了新的文献求助10
10秒前
今后应助汉堡上的鸽子粪采纳,获得10
11秒前
所所应助mumu采纳,获得10
11秒前
爆米花应助fengmian采纳,获得10
12秒前
bsf123完成签到,获得积分10
13秒前
研友_8YoVDn发布了新的文献求助10
13秒前
13秒前
Ah完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
ding应助qayqay003采纳,获得10
14秒前
14秒前
乾之三爻完成签到,获得积分20
14秒前
15秒前
Oct完成签到 ,获得积分10
16秒前
自信忻发布了新的文献求助10
16秒前
17秒前
123ywh发布了新的文献求助10
17秒前
现代哑铃完成签到 ,获得积分10
18秒前
哗啦啦完成签到,获得积分20
18秒前
Jupiter完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756