A Hierarchical Incentive Design Toward Motivating Participation in Coded Federated Learning

计算机科学 激励 编码(社会科学) 计算 人工智能 算法 数学 统计 经济 微观经济学
作者
Jer Shyuan Ng,Wei Yang Bryan Lim,Zehui Xiong,Xianbin Cao,Dusit Niyato,Cyril Leung,Dong In Kim
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 359-375 被引量:37
标识
DOI:10.1109/jsac.2021.3126057
摘要

Federated Learning (FL) is a privacy-preserving collaborative learning approach that trains artificial intelligence (AI) models without revealing local datasets of the FL workers. While FL ensures the privacy of the FL workers, its performance is limited by several bottlenecks, which become significant given the increasing amounts of data generated and the size of the FL network. One of the main challenges is the straggler effects where the significant computation delays are caused by the slow FL workers. As such, Coded Federated Learning (CFL), which leverages coding techniques to introduce redundant computations to the FL server, has been proposed to reduce the computation latency. In CFL, the FL server helps to compute a subset of the partial gradients based on the composite parity data and aggregates the computed partial gradients with those received from the FL workers. In order to implement the coding schemes over the FL network, incentive mechanisms are important to allocate the resources of the FL workers and data owners efficiently in order to complete the CFL training tasks. In this paper, we consider a two-level incentive mechanism design problem. In the lower level, the data owners are allowed to support the FL training tasks of the FL workers by contributing their data. To model the dynamics of the selection of FL workers by the data owners, an evolutionary game is adopted to achieve an equilibrium solution. In the upper level, a deep learning based auction is proposed to model the competition among the model owners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
hbpu230701完成签到,获得积分10
3秒前
4秒前
壮观傲霜完成签到 ,获得积分10
6秒前
leetaisan完成签到,获得积分10
8秒前
nieanicole完成签到 ,获得积分10
9秒前
luke17743508621完成签到,获得积分10
14秒前
15秒前
知犯何逆完成签到 ,获得积分10
16秒前
guantlv完成签到,获得积分10
18秒前
三颗石头完成签到,获得积分10
18秒前
段翠完成签到 ,获得积分10
18秒前
感动葵阴完成签到,获得积分10
19秒前
善学以致用应助tt采纳,获得10
19秒前
tiger完成签到,获得积分10
19秒前
ws556完成签到,获得积分10
20秒前
耍酷的雪糕完成签到,获得积分10
20秒前
周周发布了新的文献求助10
21秒前
刘歌完成签到 ,获得积分10
21秒前
hsr_eye完成签到,获得积分10
21秒前
彭于晏应助朻安采纳,获得10
21秒前
yycc完成签到,获得积分10
23秒前
hxhw完成签到,获得积分10
23秒前
奥米希完成签到,获得积分10
23秒前
背带裤打篮球应助biosep采纳,获得30
24秒前
纳兰若微应助周周采纳,获得10
29秒前
怡然远望完成签到 ,获得积分10
30秒前
篮孩子完成签到,获得积分10
31秒前
小白白完成签到,获得积分10
31秒前
15327432191完成签到 ,获得积分10
32秒前
guang5210完成签到,获得积分10
33秒前
詹密完成签到,获得积分10
33秒前
黑夜做着白日梦完成签到,获得积分10
37秒前
冯冯完成签到 ,获得积分10
39秒前
白日梦我完成签到,获得积分20
40秒前
violetlishu完成签到 ,获得积分10
41秒前
burninhell完成签到,获得积分10
42秒前
瞿访云完成签到,获得积分10
43秒前
云轩完成签到,获得积分10
44秒前
张一完成签到,获得积分10
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413469
求助须知:如何正确求助?哪些是违规求助? 3015836
关于积分的说明 8871935
捐赠科研通 2703538
什么是DOI,文献DOI怎么找? 1482357
科研通“疑难数据库(出版商)”最低求助积分说明 685250
邀请新用户注册赠送积分活动 679970