Proof of Federated Learning: A Novel Energy-recycling Consensus Algorithm

计算机科学 Guard(计算机科学) 联合学习 块链 人工智能 工作证明制度 机器学习 能量(信号处理) 概念证明 任务(项目管理) 算法 计算机安全 统计 数学 管理 经济 程序设计语言 操作系统
作者
Xidi Qu,Shengling Wang,Qin Hu,Xiuzhen Cheng
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.1912.11745
摘要

Proof of work (PoW), the most popular consensus mechanism for Blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-ming, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in Blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our paper is the first work to employ federal learning as the proof of work for Blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈丞澄完成签到,获得积分10
1秒前
2秒前
Ava应助che采纳,获得10
2秒前
蓦然发布了新的文献求助10
3秒前
李健应助负责的方盒采纳,获得10
4秒前
听听不想读啦完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
茶多一点酚完成签到,获得积分10
6秒前
6秒前
可爱的函函应助落后翠柏采纳,获得10
7秒前
悠悠应助奶油布丁采纳,获得10
8秒前
希望天下0贩的0应助蓦然采纳,获得10
9秒前
9秒前
9秒前
烦烦烦发布了新的文献求助10
10秒前
10秒前
我是老大应助qaz采纳,获得10
11秒前
12秒前
12秒前
端庄的香薇完成签到,获得积分10
13秒前
13秒前
云漫山完成签到 ,获得积分10
13秒前
叶帆完成签到,获得积分10
14秒前
桐桐应助3927456843采纳,获得30
14秒前
che发布了新的文献求助10
14秒前
共享精神应助MeetAgainLZH采纳,获得10
15秒前
15秒前
xing发布了新的文献求助10
15秒前
123完成签到 ,获得积分10
15秒前
16秒前
欧贤书发布了新的文献求助10
16秒前
天天快乐应助Gryphon采纳,获得10
17秒前
粗犷的冷霜完成签到,获得积分10
18秒前
小马发布了新的文献求助10
19秒前
Sunny完成签到,获得积分10
19秒前
小满发布了新的文献求助10
19秒前
20秒前
21秒前
科目三应助董秋白采纳,获得10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704