吸附
催化作用
选择性催化还原
纳米复合材料
选择性
光催化
激进的
密度泛函理论
动力学
化学
材料科学
无机化学
化学工程
纳米技术
物理化学
有机化学
计算化学
物理
工程类
量子力学
作者
Kaixing Fu,Xia Liu,Deyou Yu,Jinming Luo,Zhiwei Wang,John C. Crittenden
标识
DOI:10.1021/acs.est.0c05532
摘要
Mercury (Hg) removal is crucial to the safety of water resources, yet it lacks an effective removal technology, especially for emergency on-site remediation. Herein, multilayered oxygen-functionalized Ti3C2 (Ti3C2Ox) (abbreviated as M-Ti3C2) nanosheets were prepared to remove Hg(II) from water. The M-Ti3C2 has demonstrated ultrafast adsorption kinetics (the concentration decreased from 10 400 to 33 μg L–1 in 10 s), impressively high capacity (4806 mg g–1), high selectivity, and broad working pH range (3–12). The density functional theory (DFT) calculations and experimental characterizations unveil that this exceptional Hg(II) removal is owing to the distinct interaction (e.g., adsorption coupled with catalytic reduction). Specifically, Ti atoms on the {001} facets of M-Ti3C2 prefer to adsorb Hg(II) in the form of HgClOH, which subsequently undergoes homolytic cleavage to form radical species (e.g., •OH and •HgCl). Immediately, the •HgCl radicals dimerize and form crystalline Hg2Cl2 on the edges of M-Ti3C2. Up to ∼95% of dimeric Hg2Cl2 can be efficiently recovered via facile thermal treatment. Notably, owing to the adsorbed •OH and energy released during the distinct interaction, M-Ti3C2 has been oxidized to TiO2/C nanocomposites. And the TiO2/C nanocomposites have shown to have better performance on the photocatalytic degradation of organic pollutants than Degussa P25. These exceptional features coupled with mercuric recyclable nature make M-Ti3C2 an outstanding candidate for rapid/urgent Hg(II) removal and recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI