量子非定域性
量子纠缠
物理
量子力学
量子
产品(数学)
订单(交换)
数学物理
数学
几何学
财务
经济
作者
Peng Yuan,Guojing Tian,Xiaoming Sun
出处
期刊:Physical review
日期:2020-10-29
卷期号:102 (4)
被引量:34
标识
DOI:10.1103/physreva.102.042228
摘要
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. First, in a tripartite quantum system, we present a construction of strongly nonlocal quantum states containing $6{(d\ensuremath{-}1)}^{2}$ orthogonal product states in ${\mathbb{C}}^{d}\ensuremath{\bigotimes}{\mathbb{C}}^{d}\ensuremath{\bigotimes}{\mathbb{C}}^{d}$ and build $6{d}^{2}\ensuremath{-}8d+4$ product states in ${\mathbb{C}}^{d}\ensuremath{\bigotimes}{\mathbb{C}}^{d}\ensuremath{\bigotimes}{\mathbb{C}}^{d+1}$, which have been proved to be strongly nonlocal. Obviously, both results turn out to be one order of magnitude smaller than the number of basis states ${d}^{3}$ for $d\ensuremath{\ge}3$. Second, we give explicit forms of strongly nonlocal orthogonal product basis in ${\mathbb{C}}^{3}\ensuremath{\bigotimes}{\mathbb{C}}^{3}\ensuremath{\bigotimes}{\mathbb{C}}^{3}\ensuremath{\bigotimes}{\mathbb{C}}^{3}$ and ${\mathbb{C}}^{4}\ensuremath{\bigotimes}{\mathbb{C}}^{4}\ensuremath{\bigotimes}{\mathbb{C}}^{4}\ensuremath{\bigotimes}{\mathbb{C}}^{4}$ quantum systems, where four is the largest known number of subsystems in which there exists strong quantum nonlocality without entanglement up to now. All the results positively answer the open problems raised by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)]; that is, there do exist a small number of quantum states that can demonstrate strong quantum nonlocality without entanglement.
科研通智能强力驱动
Strongly Powered by AbleSci AI