髓系白血病
癌症研究
干细胞
骨形态发生蛋白受体
生物
造血
骨髓
骨形态发生蛋白
白血病
髓样
骨形态发生蛋白4
细胞生物学
祖细胞
造血干细胞
免疫学
遗传学
基因
作者
Sylvain Lefort,Véronique Maguer-Satta
出处
期刊:Biochemical Society Transactions
[Portland Press]
日期:2020-03-13
卷期号:48 (2): 411-418
被引量:11
摘要
The bone morphogenetic protein (BMP) pathway regulates the fate and proliferation of normal hematopoietic stem cells (HSC) as well as interactions with their niche. While BMP2 and BMP4 promote HSC differentiation, only BMP4 maintains HSC pool and favors interactions with their niche. In myeloid leukemia, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in Chronic Myeloid Leukemia (CML) and Acute Myeloid leukemia (AML) responsible for leukemic stem cells (LSC) survival. In AML, BMP pathway alterations sustain and promote resistant immature-like leukemic cells by activating a new signaling cascade. Binding of BMP4 to BMPR1A leads to ΔNp73 expression, which in turn induces NANOG, altogether associated with a poor patient's prognosis. Despite efficient targeted therapies, like Tyrosine Kinase Inhibitors (TKI) in CML, many patients retain LSCs. Our laboratory demonstrated that the BMP pathway sustains a permanent pool of LSCs expressing high levels of BMPR1B receptor, that evolve upon treatment to progressively implement a BMP4 autocrine loop, leading to TKI-resistant cells. Single cell RNA-Seq analysis of TKI-persisting LSCs showed a co-enrichment of BMP with Jak2-signaling, quiescence and stem cell (SC) signatures. Using a new model of persisting LSCs, we recently demonstrated that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways and could be targeted by blocking BMPR1B/Jak2 signal. Lastly, a specific BMPR1B inhibitor impaired BMP4-mediated LSC protection against TKIs. Altogether, data based on various studies including ours, indicate that BMP targeting could eliminate leukemic cells within a protective bone marrow microenvironment to efficiently impact residual resistance or persistence of LSCs in myeloid leukemia.
科研通智能强力驱动
Strongly Powered by AbleSci AI