材料科学
轨道能级差
噻吩
密度泛函理论
共轭体系
光化学
聚合物
光电流
分解水
电子供体
接受者
光催化
化学
光电子学
计算化学
有机化学
分子
催化作用
复合材料
物理
凝聚态物理
作者
Shunqi Xu,Hanjun Sun,Matthew A. Addicoat,Bishnu P. Biswal,Fan He,Sang-Wook Park,Silvia Paasch,Tao Zhang,Wenbo Sheng,Eike Brunner,Yang Hou,Marcus Richter,Xinliang Feng
标识
DOI:10.1002/adma.202006274
摘要
Abstract Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene‐bridged donor–acceptor‐based 2D sp 2 ‐carbon‐linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron‐accepting building block 2,3,8,9,14,15‐hexa(4‐formylphenyl) diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATN‐6CHO) and the first electron‐donating linker 2,2′‐([2,2′‐bithiophene]‐5,5′‐diyl)diacetonitrile (ThDAN) provides the 2D CCP‐HATNThDAN (2D CCP‐Th). Compared with the corresponding biphenyl‐bridged 2D CCP‐HATN‐BDAN (2D CCP‐BD), the bithiophene‐based 2D CCP‐Th exhibits a wide light‐harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP‐Th a promising candidate for PEC water reduction. As a result, 2D CCP‐Th presents a superb H 2 ‐evolution photocurrent density up to ≈7.9 µA cm −2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm −2 ). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI