亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Neural Network-Based Diagnosis Prediction

计算机科学 杠杆(统计) 医学诊断 领域知识 特征工程 数据挖掘 人工智能 图形 机器学习 卷积神经网络 深度学习 理论计算机科学 医学 病理
作者
Yang Li,Buyue Qian,Xianli Zhang,Hui Liu
出处
期刊:Big data [Mary Ann Liebert]
卷期号:8 (5): 379-390 被引量:47
标识
DOI:10.1089/big.2020.0070
摘要

Diagnosis prediction is an important predictive task in health care that aims to predict the patient future diagnosis based on their historical medical records. A crucial requirement for this task is to effectively model the high-dimensional, noisy, and temporal electronic health record (EHR) data. Existing studies fulfill this requirement by applying recurrent neural networks with attention mechanisms, but facing data insufficiency and noise problem. Recently, more accurate and robust medical knowledge-guided methods have been proposed and have achieved superior performance. These methods inject the knowledge from a graph structure medical ontology into deep models via attention mechanisms to provide supplementary information of the input data. However, these methods only partially leverage the knowledge graph and neglect the global structure information, which is an important feature. To address this problem, we propose an end-to-end robust solution, namely Graph Neural Network-Based Diagnosis Prediction (GNDP). First, we propose to utilize the medical knowledge graph as an internal information of a patient by constructing sequential patient graphs. These graphs not only carry the historical information from the EHR but also infuse with domain knowledge. Then we design a robust diagnosis prediction model based on a spatial-temporal graph convolutional network. The proposed model extracts meaningful features from sequential graph EHR data effectively through multiple spatial-temporal graph convolution units to generate robust patients' representations for accurate diagnosis predictions. We evaluate the performance of GNDP against a set of state-of-the-art methods on two real-world medical data sets, the results demonstrate that our methods can achieve a better utilization of knowledge graph and improve the accuracy on diagnosis prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助zjl123采纳,获得10
7秒前
30秒前
31秒前
wenwen完成签到 ,获得积分10
32秒前
zjl123发布了新的文献求助10
36秒前
37秒前
随性随缘随命完成签到 ,获得积分10
39秒前
43秒前
48秒前
51秒前
52秒前
大模型应助qqq采纳,获得10
52秒前
CATH完成签到 ,获得积分10
1分钟前
1分钟前
机智迎天完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
jeff完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
某某某发布了新的文献求助10
1分钟前
1分钟前
irisxxxx完成签到,获得积分10
1分钟前
某某某完成签到,获得积分10
1分钟前
丁牛青发布了新的文献求助10
1分钟前
1分钟前
李健的小迷弟应助丁牛青采纳,获得20
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
追求者发布了新的文献求助10
2分钟前
2分钟前
追求者完成签到,获得积分20
2分钟前
zengzzz完成签到 ,获得积分10
2分钟前
3分钟前
李健应助麦当劳薯条采纳,获得10
3分钟前
赘婿应助Cathy采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482458
捐赠科研通 2611452
什么是DOI,文献DOI怎么找? 1425890
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005