Unveiling the origin of high reversible capacity in Li-rich layered oxide in Li-ion batteries

离子 锂(药物) 尖晶石 电解质 锂离子电池 电化学 无机化学 储能 阳极
作者
Hu Huicong,Maolin Zhang,Dongyan Zhang,Ri-ichi Murakami,Pangpang Wang,Yangxi Yan,Zhimin Li
出处
期刊:Materials research express [IOP Publishing]
卷期号:6 (11): 115547-
标识
DOI:10.1088/2053-1591/ab4ee9
摘要

Lithium-rich layered oxides are promising cathode candidates for Li-ion batteries due to their high specific capacity than the commercial cathode material, LiCoO2. However, the mechanism of the incredibly high capacity and inherent problems of lithium-rich layered oxides, such as low initial Columbic efficiency and poor capacity retention, has not been explored in detail. Herein, lithium-rich layered oxide, Li1.2 Mn0.54Ni0.13Co0.13O2, has been synthesized by sol-gel method, which could be charged to 5 V (versus Li/Li+) and delivered a specific capacity of 248 mAh g−1. Then, a combination of XRD Rietveld refinement and HRTEM analysis has been employed to investigate the microstructure and phase composition of as-prepared Li1.2 Mn0.54Ni0.13Co0.13O2. The results revealed that Li1.2 Mn0.54Ni0.13Co0.13O2 nanoparticles consist of different phases, including LiCoO2 with R-3m symmetry, LiNiO2 with R-3m symmetry, LiMnO2 with R-3m symmetry, Li2MnO3 with c2/m symmetry, and Li2MnO3 with cmc/21 symmetry. It has been demonstrated that O2-Li2MnO3 phase with cmc/21 symmetry is responsible for the high reversible capacity of Li1.2 Mn0.54Ni0.13Co0.13O2 compound. However, the complex phase composition caused abundant stacking faults in the nanoparticles, which led to poor rate performance. The present study provides useful insights into the charge storage mechanism of a promising Li-ion battery cathode, Li1.2 Mn0.54Ni0.13Co0.13O2, which can be used for the development of novel electrode materials for next-generation LIBs due to its lower consumption of element Co and good electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
犬豆斑完成签到,获得积分10
1秒前
2秒前
甜甜茈发布了新的文献求助10
3秒前
稳重的汉堡完成签到,获得积分10
3秒前
5秒前
6秒前
7秒前
科研通AI5应助SZY采纳,获得10
8秒前
一颗烂番茄完成签到 ,获得积分10
9秒前
霸气的断缘完成签到,获得积分10
9秒前
赘婿应助ziyue采纳,获得10
9秒前
科研通AI5应助潇湘雪月采纳,获得10
10秒前
moli0424发布了新的文献求助10
10秒前
10秒前
11秒前
小二郎应助昵称采纳,获得10
12秒前
12秒前
13秒前
科研通AI5应助拉长的远山采纳,获得10
13秒前
Owen应助Wuhuhu采纳,获得10
14秒前
14秒前
薄荷岛1完成签到,获得积分10
15秒前
elgar612完成签到,获得积分10
15秒前
安小小虎发布了新的文献求助10
15秒前
15秒前
NIER发布了新的文献求助20
15秒前
16秒前
泊声发布了新的文献求助50
17秒前
19秒前
19秒前
20秒前
lily发布了新的文献求助10
20秒前
20秒前
21秒前
潇湘雪月发布了新的文献求助10
21秒前
kaka完成签到,获得积分10
22秒前
羊咩咩哒完成签到,获得积分10
23秒前
adw发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3568507
求助须知:如何正确求助?哪些是违规求助? 3140168
关于积分的说明 9436261
捐赠科研通 2841016
什么是DOI,文献DOI怎么找? 1561354
邀请新用户注册赠送积分活动 730535
科研通“疑难数据库(出版商)”最低求助积分说明 718122