Assessing Drivers’ Trust of Automated Vehicle Driving Styles With a Two-Part Mixed Model of Intervention Tendency and Magnitude

制动器 自动化 驾驶模拟器 计算机科学 模拟 工程类 汽车工程 机械工程
作者
John D. Lee,Shuyuan Liu,Joshua Domeyer,Azadeh Dinparastdjadid
出处
期刊:Human Factors [SAGE]
卷期号:63 (2): 197-209 被引量:59
标识
DOI:10.1177/0018720819880363
摘要

This study examines how driving styles of fully automated vehicles affect drivers' trust using a statistical technique-the two-part mixed model-that considers the frequency and magnitude of drivers' interventions.Adoption of fully automated vehicles depends on how people accept and trust them, and the vehicle's driving style might have an important influence.A driving simulator experiment exposed participants to a fully automated vehicle with three driving styles (aggressive, moderate, and conservative) across four intersection types (with and without a stop sign and with and without crossing path traffic). Drivers indicated their dissatisfaction with the automation by depressing the brake or accelerator pedals. A two-part mixed model examined how automation style, intersection type, and the distance between the automation's driving style and the person's driving style affected the frequency and magnitude of their pedal depression.The conservative automated driving style increased the frequency and magnitude of accelerator pedal inputs; conversely, the aggressive style increased the frequency and magnitude of brake pedal inputs. The two-part mixed model showed a similar pattern for the factors influencing driver response, but the distance between driving styles affected how often the brake pedal was pressed, but it had little effect on how much it was pressed.Eliciting brake and accelerator pedal responses provides a temporally precise indicator of drivers' trust of automated driving styles, and the two-part model considers both the discrete and continuous characteristics of this indicator.We offer a measure and method for assessing driving styles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣的亦巧完成签到,获得积分10
1秒前
1秒前
要减肥金针菇完成签到,获得积分10
1秒前
2秒前
2秒前
kk完成签到,获得积分10
2秒前
nnnnn发布了新的文献求助10
3秒前
3秒前
Allen完成签到,获得积分10
4秒前
Hanniewei发布了新的文献求助10
4秒前
汉堡包应助CDN采纳,获得10
5秒前
Weining发布了新的文献求助10
5秒前
6秒前
我是老大应助刘1采纳,获得10
6秒前
狂野猕猴桃完成签到 ,获得积分10
7秒前
老实珩发布了新的文献求助30
7秒前
梦旋完成签到 ,获得积分10
8秒前
勤恳含烟发布了新的文献求助10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
苏卿应助那个男人采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
Akim应助科研吗喽采纳,获得100
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
光之剑完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912