Fuzzified Image Enhancement for Deep Learning in Iris Recognition

人工智能 深度学习 计算机科学 平滑的 模糊逻辑 虹膜识别 边界(拓扑) 卷积神经网络 模式识别(心理学) 计算机视觉 IRIS(生物传感器) 噪音(视频) 图像(数学) 数学 生物识别 数学分析
作者
Liu Ming,Zhiqian Zhou,Penghui Shang,Dong Xu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 92-99 被引量:73
标识
DOI:10.1109/tfuzz.2019.2912576
摘要

Deep learning techniques such as convolutional neural network and capsule network have attained good results in iris recognition. However, due to the influence of eyelashes, skin, and background noises, the model often needs many iterations to retrieve informative iris patterns. Also because of some nonideal situations, such as reflection of glasses and facula on the eyeball, it is hard to detect the boundary of pupil and iris perfectly. Under such a circumstance, discarding the rest parts beyond the boundary may cause losing useful information. Hence, we use Gaussian, triangular fuzzy average, and triangular fuzzy median smoothing filters to preprocess the image by fuzzifying the region beyond the boundary to improve the signal-to-noise ratios. We applied the enhanced images through fuzzy operations to train deep learning methods, which speeds up the process of convergence and also increases the recognition accuracy rate. The saliency maps show that fuzzified image filters make the images more informative for deep learning. The proposed fuzzy operation of images may be a robust technique in many other deep-learning applications of image processing, analysis, and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助酷炫的春天采纳,获得10
1秒前
gao发布了新的文献求助10
1秒前
pengpeng发布了新的文献求助10
2秒前
2秒前
2秒前
123发布了新的文献求助10
2秒前
Hello应助桃博采纳,获得10
2秒前
3秒前
传奇3应助WY采纳,获得10
4秒前
4秒前
4秒前
5秒前
小二郎应助13123采纳,获得10
6秒前
善学以致用应助big张采纳,获得10
7秒前
隐形曼青应助亭瞳采纳,获得10
7秒前
7秒前
勤恳的珊完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
笑笑发布了新的文献求助10
9秒前
灵巧高山应助Parotodus采纳,获得30
9秒前
ZSWAA发布了新的文献求助30
10秒前
聪慧寄凡完成签到,获得积分10
10秒前
11秒前
Zorion发布了新的文献求助10
11秒前
科研通AI5应助高雯采纳,获得10
11秒前
科研通AI5应助瑾风阳采纳,获得30
11秒前
锅巴发布了新的文献求助10
11秒前
南非的猫发布了新的文献求助10
12秒前
13秒前
淑儿哥哥完成签到,获得积分10
13秒前
充电宝应助zw132采纳,获得10
13秒前
落寞臻完成签到,获得积分10
14秒前
sun完成签到,获得积分10
14秒前
pluto应助火星上荟采纳,获得50
15秒前
WY发布了新的文献求助10
16秒前
小高同学发布了新的文献求助10
17秒前
空山新雨完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554314
求助须知:如何正确求助?哪些是违规求助? 3130107
关于积分的说明 9385253
捐赠科研通 2829334
什么是DOI,文献DOI怎么找? 1555477
邀请新用户注册赠送积分活动 726090
科研通“疑难数据库(出版商)”最低求助积分说明 715383