激子
异质结
凝聚态物理
电介质
结合能
硫族元素
材料科学
单层
电子
哈密顿量(控制论)
过渡金属
化学
原子物理学
物理
光电子学
纳米技术
结晶学
数学优化
量子力学
生物化学
催化作用
数学
作者
M. Van der Donck,F. M. Peeters
出处
期刊:Physical review
[American Physical Society]
日期:2018-09-04
卷期号:98 (11)
被引量:75
标识
DOI:10.1103/physrevb.98.115104
摘要
Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.
科研通智能强力驱动
Strongly Powered by AbleSci AI