MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method

放射治疗计划 放射治疗 质子疗法 核医学 医学物理学 医学 放射科 计算机科学
作者
Yingzi Liu,Yang Lei,Yinan Wang,Tonghe Wang,Lei Ren,Liyong Lin,Mark W. McDonald,Walter J. Curran,Tian Liu,Jun Zhou,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:64 (14): 145015-145015 被引量:62
标识
DOI:10.1088/1361-6560/ab25bc
摘要

Magnetic resonance imaging (MRI) has been widely used in combination with computed tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target delineation due to its superior soft tissue contrast over CT. The MRI-only treatment process is currently an active field of research since it could eliminate systematic MR-CT co-registration errors, reduce medical cost, avoid diagnostic radiation exposure, and simplify clinical workflow. The purpose of this work is to validate the application of a deep learning-based method for abdominal synthetic CT (sCT) generation by image evaluation and dosimetric assessment in a commercial proton pencil beam treatment planning system (TPS). This study proposes to integrate dense block into a 3D cycle-consistent generative adversarial networks (cycle GAN) framework in an effort to effectively learn the nonlinear mapping between MRI and CT pairs. A cohort of 21 patients with co-registered CT and MR pairs were used to test the deep learning-based sCT image quality by leave-one-out cross validation. The CT image quality, dosimetric accuracy and the distal range fidelity were rigorously checked, using side-by-side comparison against the corresponding original CT images. The average mean absolute error (MAE) was 72.87  ±  18.16 HU. The relative differences of the statistics of the PTV dose volume histogram (DVH) metrics between sCT and CT were generally less than 1%. Mean 3D gamma analysis passing rate of 1 mm/1%, 2 mm/2%, 3 mm/3% criteria with 10% dose threshold were 90.76%  ±  5.94%, 96.98%  ±  2.93% and 99.37%  ±  0.99%, respectively. The median, mean and standard deviation of absolute maximum range differences were 0.170 cm, 0.186 cm and 0.155 cm. The image similarity, dosimetric and distal range agreement between sCT and original CT suggests the feasibility of further development of an MRI-only workflow for liver proton radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮尘完成签到 ,获得积分0
1秒前
1秒前
科研通AI2S应助optical采纳,获得10
1秒前
2秒前
牧瞻发布了新的文献求助10
2秒前
2秒前
xixi完成签到,获得积分10
2秒前
2秒前
wingmay完成签到,获得积分10
3秒前
fangfang发布了新的文献求助10
5秒前
萧瑟处完成签到,获得积分10
5秒前
夏天不回来完成签到,获得积分10
6秒前
xixi发布了新的文献求助10
6秒前
6秒前
嘉心糖应助哎呦喂采纳,获得20
6秒前
小猪少年呆呆完成签到 ,获得积分10
6秒前
7秒前
qiqiqiqiqi完成签到 ,获得积分10
7秒前
wingmay发布了新的文献求助10
8秒前
英俊001完成签到 ,获得积分10
9秒前
胖仔完成签到,获得积分10
10秒前
秋冬发布了新的文献求助10
10秒前
10秒前
11秒前
在水一方应助lu采纳,获得10
13秒前
16秒前
小蘑菇应助赵哥采纳,获得10
17秒前
lois_ni发布了新的文献求助10
17秒前
李瑞瑞发布了新的文献求助10
21秒前
婷妞儿完成签到,获得积分10
24秒前
kento发布了新的文献求助50
26秒前
李爱国应助yuni采纳,获得10
27秒前
爱吃香菜的小黄瓜完成签到,获得积分20
27秒前
北三十发布了新的文献求助10
28秒前
28秒前
哈哈哈完成签到 ,获得积分10
29秒前
科研通AI2S应助豪的花花采纳,获得10
29秒前
我的miemie发布了新的文献求助10
29秒前
小卓越完成签到 ,获得积分10
30秒前
32秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168334
求助须知:如何正确求助?哪些是违规求助? 2819660
关于积分的说明 7927409
捐赠科研通 2479535
什么是DOI,文献DOI怎么找? 1320994
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460