Feature Extraction and Selection for Emotion Recognition from Electrodermal Activity

特征选择 特征提取 模式识别(心理学) 相互信息 价(化学) 计算机科学 人工智能 唤醒 条件互信息 情绪分类 情绪识别 语音识别 特征(语言学) Mel倒谱 机器学习 心理学 哲学 物理 量子力学 神经科学 语言学
作者
Jainendra Shukla,Miguel Barreda-Ángeles,Joan Guix Oliver,G. C. Nandi,Domènec Puig
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (4): 857-869 被引量:206
标识
DOI:10.1109/taffc.2019.2901673
摘要

Electrodermal activity (EDA) is indicative of psychological processes related to human cognition and emotions. Previous research has studied many methods for extracting EDA features; however, their appropriateness for emotion recognition has been tested using a small number of distinct feature sets and on different, usually small, data sets. In the current research, we reviewed 25 studies and implemented 40 different EDA features across time, frequency and time-frequency domains on the publicly available AMIGOS dataset. We performed a systematic comparison of these EDA features using three feature selection methods, Joint Mutual Information (JMI), Conditional Mutual Information Maximization (CMIM) and Double Input Symmetrical Relevance (DISR) and machine learning techniques. We found that approximately the same numbers of features are required to obtain the optimal accuracy for the arousal recognition and the valence recognition. Also, the subject-dependent classification results were significantly higher than the subject-independent classification for both arousal and valence recognition. Statistical features related to the Mel-Frequency Cepstral Coefficients (MFCC) were explored for the first time for the emotion recognition from EDA signals and they outperformed all other feature groups, including the most commonly used Skin Conductance Response (SCR) related features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啦啦啦发布了新的文献求助10
1秒前
田様应助Y哦莫哦莫采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
程新亮完成签到 ,获得积分10
3秒前
3秒前
专注丸子完成签到,获得积分10
3秒前
3秒前
4秒前
feng发布了新的文献求助10
5秒前
赘婿应助笑点低的豪采纳,获得10
7秒前
7秒前
卓头OvQ发布了新的文献求助10
7秒前
SciGPT应助sdasd采纳,获得10
8秒前
8秒前
紫麒麟发布了新的文献求助80
8秒前
bkagyin应助迷路的鞅采纳,获得10
8秒前
加缪发布了新的文献求助20
9秒前
jiajia完成签到 ,获得积分10
10秒前
10秒前
所所应助百甲采纳,获得10
10秒前
10秒前
Ava应助Oz采纳,获得10
11秒前
坦率的咖啡豆完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
gwd发布了新的文献求助10
14秒前
机智的绝音完成签到,获得积分10
14秒前
小小发布了新的文献求助10
14秒前
小二郎应助文艺的胖虎采纳,获得10
15秒前
16秒前
leaolf应助风清扬采纳,获得50
17秒前
活泼的诗桃完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562