Feature Extraction and Selection for Emotion Recognition from Electrodermal Activity

特征选择 特征提取 模式识别(心理学) 相互信息 价(化学) 计算机科学 人工智能 唤醒 条件互信息 情绪分类 情绪识别 语音识别 特征(语言学) Mel倒谱 机器学习 心理学 哲学 物理 量子力学 神经科学 语言学
作者
Jainendra Shukla,Miguel Barreda-Ángeles,Joan Guix Oliver,G. C. Nandi,Doménec Puig
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (4): 857-869 被引量:139
标识
DOI:10.1109/taffc.2019.2901673
摘要

Electrodermal activity (EDA) is indicative of psychological processes related to human cognition and emotions. Previous research has studied many methods for extracting EDA features; however, their appropriateness for emotion recognition has been tested using a small number of distinct feature sets and on different, usually small, data sets. In the current research, we reviewed 25 studies and implemented 40 different EDA features across time, frequency and time-frequency domains on the publicly available AMIGOS dataset. We performed a systematic comparison of these EDA features using three feature selection methods, Joint Mutual Information (JMI), Conditional Mutual Information Maximization (CMIM) and Double Input Symmetrical Relevance (DISR) and machine learning techniques. We found that approximately the same numbers of features are required to obtain the optimal accuracy for the arousal recognition and the valence recognition. Also, the subject-dependent classification results were significantly higher than the subject-independent classification for both arousal and valence recognition. Statistical features related to the Mel-Frequency Cepstral Coefficients (MFCC) were explored for the first time for the emotion recognition from EDA signals and they outperformed all other feature groups, including the most commonly used Skin Conductance Response (SCR) related features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
上官若男应助江余怅晚采纳,获得10
刚刚
超级映安发布了新的文献求助10
3秒前
Toby完成签到 ,获得积分10
3秒前
5秒前
打打应助漂泊采纳,获得10
6秒前
酷波er应助不错哟小伙子采纳,获得10
7秒前
7秒前
妮妮完成签到,获得积分10
10秒前
himes发布了新的文献求助10
11秒前
搜集达人应助白樱恋曲采纳,获得10
13秒前
14秒前
14秒前
16秒前
17秒前
ff发布了新的文献求助10
17秒前
yfw发布了新的文献求助10
17秒前
赘婿应助howl采纳,获得10
18秒前
19秒前
19秒前
狸子小昭完成签到,获得积分10
20秒前
Kk发布了新的文献求助30
20秒前
20秒前
漂泊发布了新的文献求助10
20秒前
okayyup完成签到,获得积分10
20秒前
丘比特应助Vv采纳,获得10
20秒前
21秒前
斗南无花完成签到 ,获得积分10
21秒前
XuXIkai发布了新的文献求助10
22秒前
完美世界应助春夏采纳,获得10
23秒前
DZQ完成签到,获得积分10
23秒前
zlf完成签到,获得积分10
23秒前
gdh发布了新的文献求助10
24秒前
ahai完成签到 ,获得积分10
24秒前
情怀应助yfw采纳,获得10
24秒前
himes完成签到,获得积分10
24秒前
我是老大应助Kk采纳,获得10
24秒前
25秒前
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043